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Relevant Course Information

 hw6 due TONIGHT (4/13) @ 11:59 pm 

 Lab 1a closes TONIGHT (4/13) @ 11:59 pm 
 Submit pointer.c and lab1Asynthesis.txt

 Make sure you check the Gradescope autograder output!

 Can use late day tokens to submit up until Wed 11:59 pm

 Lab 1b, due Monday 4/18 at 11:59pm

 No major programming restrictions, but should avoid magic 
numbers by using C macros (#define)

 For debugging, can use provided utility functions 
print_binary_short() and print_binary_long()

 Pay attention to the output of aisle_test and 
store_test – failed tests will show you actual vs. expected
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Reading Review

 Terminology:

 Instruction Set Architecture (ISA):  CISC vs. RISC

 Instructions:  data transfer, arithmetic/logical, control flow
• Size specifiers: b, w, l, q

 Operands:  immediates, registers, memory
• Memory operand:  displacement, base register, index register, scale 

factor
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Review Questions

 Assume that the register %rax currently holds the 
value 0x 01 02 03 04 05 06 07 08

 Answer the questions on Ed Lessons about the 
following instruction (<instr> <src> <dst>):

xorw $-1, %ax

 Operation type:

 Operand types:

 Operation width:

 (extra) Result in %rax:
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Roadmap
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car *c = malloc(sizeof(car));

c->miles = 100;

c->gals = 17;

float mpg = get_mpg(c);

free(c);

Car c = new Car();

c.setMiles(100);

c.setGals(17);

float mpg =

c.getMPG();

get_mpg:

pushq %rbp

movq %rsp, %rbp

...

popq %rbp

ret

Java:C:

Assembly 
language:

Machine 
code:

0111010000011000

100011010000010000000010

1000100111000010

110000011111101000011111

Computer 
system:

OS:

Memory & data
Integers & floats
x86 assembly
Procedures & stacks
Executables
Arrays & structs
Memory & caches
Processes
Virtual memory
Memory allocation
Java vs. C
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Definitions

 Architecture (ISA): The parts of a processor design 
that one needs to understand to write assembly code

 What is directly visible to software

 The “contract” or “blueprint” between hardware and 
software

 Microarchitecture: Implementation of the 
architecture

 CSE/EE 469
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Instruction Set Architectures (Review)

 The ISA defines:

 The system’s state (e.g., registers, memory, program 
counter)

 The instructions the CPU can execute

 The effect that each of these instructions will have on the 
system state
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CPU

MemoryPC

Registers
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General ISA Design Decisions

 Instructions

 What instructions are available? What do they do?

 How are they encoded?

 Registers

 How many registers are there?

 How wide are they?

 Memory

 How do you specify a memory location?

8



CSE351, Spring 2022L08:  x86-64 Programming I

Instruction Set Philosophies (Review)

 Complex Instruction Set Computing (CISC):
Add more and more elaborate and specialized 
instructions as needed 

 Lots of tools for programmers to use, but hardware must be 
able to handle all instructions

 x86-64 is CISC, but only a small subset of instructions 
encountered with Linux programs

 Reduced Instruction Set Computing (RISC):
Keep instruction set small and regular

 Easier to build fast hardware

 Let software do the complicated operations by composing 
simpler ones
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Mainstream ISAs

10

Macbooks & PCs
(Core i3, i5, i7, M)
x86-64 Instruction Set

Smartphone-like devices
(iPhone, iPad, Raspberry Pi)
ARM Instruction Set

Mostly research 
(some traction in embedded)
RISC-V Instruction Set

http://ref.x86asm.net/coder64-abc.html
http://infocenter.arm.com/help/topic/com.arm.doc.qrc0001m/QRC0001_UAL.pdf
https://inst.eecs.berkeley.edu/~cs61c/resources/riscvcard-large.pdf
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C Language

Architecture Sits at the Hardware Interface
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x86-64

Intel Pentium 4

Intel Core 2

Intel Core i7

AMD Opteron

AMD Athlon

GCC

ARMv8
(AArch64/A64)

ARM Cortex-A53

Apple A7

Clang

Your 
program

Program 
B

Program 
A

CompilerSource code Architecture
Different applications
or algorithms

Perform optimizations,
generate instructions

Different 
implementations

Hardware
Instruction set
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Writing Assembly Code?  In 2022???

 Chances are, you’ll never write a program in 
assembly, but understanding assembly is the key to 
the machine-level execution model:

 Behavior of programs in the presence of bugs
• When high-level language model breaks down

 Tuning program performance
• Understand optimizations done/not done by the compiler

• Understanding sources of program inefficiency

 Implementing systems software
• What are the “states” of processes that the OS must manage

• Using special units (timers, I/O co-processors, etc.) inside processor!

 Fighting malicious software
• Distributed software is in binary form
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CPU

Assembly Programmer’s View

 Programmer-visible state
 PC:  the Program Counter (%rip in x86-64)

• Address of next instruction

 Named registers

• Together in “register file”

• Heavily used program data

 Condition codes

• Store status information about most recent 
arithmetic operation

• Used for conditional branching 13

PC
Registers

Memory

• Code
• Data
• Stack

Addresses

Data

InstructionsCondition
Codes

 Memory
 Byte-addressable array

 Code and user data

 Includes the Stack (for 
supporting procedures)
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x86-64 Assembly “Data Types”

 Integral data of 1, 2, 4, or 8 bytes
 Data values

 Addresses

 Floating point data of 4, 8, 10 or 2x8 or 4x4 or 8x2
 Different registers for those (e.g. %xmm1, %ymm2)

 Come from extensions to x86 (SSE, AVX, …)

 No aggregate types such as arrays or structures
 Just contiguously allocated bytes in memory

 Two common syntaxes
 “AT&T”: used by our course, slides, textbook, gnu tools, …

 “Intel”: used by Intel documentation, Intel tools, …

 Must know which you’re reading
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In 351
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What is a Register? (Review)

 A location in the CPU that stores a small amount of 
data, which can be accessed very quickly (once every 
clock cycle)

 Registers have names, not addresses
 In assembly, they start with % (e.g. %rsi)

 Registers are at the heart of assembly programming

 They are a precious commodity in all architectures, but 
especially x86
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x86-64 Integer Registers – 64 bits wide

 Can reference low-order 4 bytes (also low-order 2 & 1 bytes)
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%r8d%r8

%r9d%r9

%r10d%r10

%r11d%r11

%r12d%r12

%r13d%r13

%r14d%r14

%r15d%r15

%rsp %esp

%eax%rax

%ebx%rbx

%ecx%rcx

%edx%rdx

%esi%rsi

%edi%rdi

%ebp%rbp
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Some History: IA32 Registers – 32 bits wide
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%esi %si

%edi %di

%esp %sp

%ebp %bp

%eax %ax %ah %al

%ecx %cx %ch %cl

%edx %dx %dh %dl

%ebx %bx %bh %bl

16-bit virtual registers
(backwards compatibility)

ge
n

e
ra

l p
u

rp
o

se

accumulate

counter

data

base

source index

destination index

stack pointer

base pointer

Name Origin
(mostly obsolete)
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Memory vs. Registers

 Addresses vs. Names
 0x7FFFD024C3DC %rdi

 Big vs. Small

 ~ 8 GiB (16 x 8 B) = 128 B

 Slow vs. Fast

 ~50-100 ns sub-nanosecond timescale

 Dynamic vs. Static

 Can “grow” as needed fixed number in hardware
while program runs
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Three Basic Kinds of Instructions (Review)

1) Transfer data between memory and register

 Load data from memory into register
• %reg = Mem[address] 

 Store register data into memory
• Mem[address] = %reg

2) Perform arithmetic operation on register or memory 
data
 c = a + b;    z = x << y;    i = h & g;

3) Control flow:  what instruction to execute next

 Unconditional jumps to/from procedures

 Conditional branches
19

Remember: Memory 
is indexed just like an 
array of bytes!
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Instruction Sizes and Operands (Review)

 Size specifiers

 b = 1-byte “byte”, w = 2-byte “word”, 
l = 4-byte “long word”, q = 8-byte “quad word”

 Note that due to backwards-compatible support for 8086 
programs (16-bit machines!), “word” means 16 bits = 2 bytes 
in x86 instruction names

 Operand types

 Immediate: Constant integer data ($)

 Register: 1 of 16 integer registers (%)

 Memory: Consecutive bytes of memory at a computed 
address (())
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x86-64 Introduction

 Data transfer instruction (mov)

 Arithmetic operations

 Memory addressing modes

 swap example
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Moving Data

 General form:  mov_ source, destination

 Really more of a “copy” than a “move”

 Like all instructions, missing letter (_) is the size specifier

 Lots of these in typical code
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Operand Combinations

Source Dest Src, Dest C Analog

movq

Imm
Reg movq $0x4, %rax

Mem movq $-147, (%rax)

Reg
Reg movq %rax, %rdx

Mem movq %rax, (%rdx)

Mem Reg movq (%rax), %rdx

23

 Cannot do memory-memory transfer with a single 
instruction

 How would you do it?

var_a = 0x4;

*p_a = -147;

var_d = var_a;

*p_d = var_a;

var_d = *p_a;
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Some Arithmetic Operations

 Binary (two-operand) Instructions:



 Beware argument
order!

 No distinction
between signed
and unsigned
• Only arithmetic vs.

logical shifts
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Format Computation

addq src, dst dst = dst + src (dst += src)

subq src, dst dst = dst – src

imulq src, dst dst = dst * src signed mult

sarq src, dst dst = dst >> src Arithmetic

shrq src, dst dst = dst >> src Logical

shlq src, dst dst = dst << src (same as salq)

xorq src, dst dst = dst ^ src

andq src, dst dst = dst & src

orq src, dst dst = dst | src

Maximum of one 
memory operand

operand size specifier
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Practice Question

 Which of the following are valid implementations of 
rcx = rax + rbx?

 addq %rax, %rcx
addq %rbx, %rcx

 movq $0, %rcx
addq %rbx, %rcx
addq %rax, %rcx

25

 movq %rax, %rcx
addq %rbx, %rcx

 xorq %rax, %rax
addq %rax, %rcx
addq %rbx, %rcx
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Arithmetic Example

26

long simple_arith(long x, long y)

{

long t1 = x + y;

long t2 = t1 * 3;

return t2;

}

Register Use(s)

%rdi 1st argument (x)

%rsi 2nd argument (y)

%rax return value

y += x;

y *= 3;

long r = y; 

return r;

simple_arith:

addq %rdi, %rsi

imulq $3, %rsi

movq %rsi, %rax

ret
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Example of Basic Addressing Modes
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void swap(long* xp, long* yp) 

{

long t0 = *xp;

long t1 = *yp;

*xp = t1;

*yp = t0;

}

swap:

movq (%rdi), %rax

movq (%rsi), %rdx

movq %rdx, (%rdi)

movq %rax, (%rsi)

ret

Compiler Explorer:
https://godbolt.org/z/zc4Pcq

https://godbolt.org/z/zc4Pcq
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Summary

 x86-64 is a complex instruction set computing (CISC) 
architecture

 There are 3 types of operands in x86-64
• Immediate, Register, Memory

 There are 3 types of instructions in x86-64
• Data transfer, Arithmetic, Control Flow

28


