
CSE351, Spring 2022L08: x86-64 Programming I

x86-64 Programming I
CSE 351 Spring 2022
Instructor:
Ruth Anderson

Teaching Assistants:
Melissa Birchfield
Jacob Christy
Alena Dickmann
Kyrie Dowling
Ellis Haker
Maggie Jiang
Diya Joy
Anirudh Kumar
Jim Limprasert
Armin Magness
Hamsa Shankar
Dara Stotland
Jeffery Tian
Assaf Vayner
Tom Wu
Angela Xu
Effie Zheng

http://xkcd.com/409/

http://xkcd.com/409/

CSE351, Spring 2022L08: x86-64 Programming I

Relevant Course Information

 hw6 due TONIGHT (4/13) @ 11:59 pm

 Lab 1a closes TONIGHT (4/13) @ 11:59 pm
 Submit pointer.c and lab1Asynthesis.txt

 Make sure you check the Gradescope autograder output!

 Can use late day tokens to submit up until Wed 11:59 pm

 Lab 1b, due Monday 4/18 at 11:59pm

 No major programming restrictions, but should avoid magic
numbers by using C macros (#define)

 For debugging, can use provided utility functions
print_binary_short() and print_binary_long()

 Pay attention to the output of aisle_test and
store_test – failed tests will show you actual vs. expected

2

CSE351, Spring 2022L08: x86-64 Programming I

Reading Review

 Terminology:

 Instruction Set Architecture (ISA): CISC vs. RISC

 Instructions: data transfer, arithmetic/logical, control flow
• Size specifiers: b, w, l, q

 Operands: immediates, registers, memory
• Memory operand: displacement, base register, index register, scale

factor

3

CSE351, Spring 2022L08: x86-64 Programming I

Review Questions

 Assume that the register %rax currently holds the
value 0x 01 02 03 04 05 06 07 08

 Answer the questions on Ed Lessons about the
following instruction (<instr> <src> <dst>):

xorw $-1, %ax

 Operation type:

 Operand types:

 Operation width:

 (extra) Result in %rax:

4

CSE351, Spring 2022L08: x86-64 Programming I

Roadmap

5

car *c = malloc(sizeof(car));

c->miles = 100;

c->gals = 17;

float mpg = get_mpg(c);

free(c);

Car c = new Car();

c.setMiles(100);

c.setGals(17);

float mpg =

c.getMPG();

get_mpg:

pushq %rbp

movq %rsp, %rbp

...

popq %rbp

ret

Java:C:

Assembly
language:

Machine
code:

0111010000011000

100011010000010000000010

1000100111000010

110000011111101000011111

Computer
system:

OS:

Memory & data
Integers & floats
x86 assembly
Procedures & stacks
Executables
Arrays & structs
Memory & caches
Processes
Virtual memory
Memory allocation
Java vs. C

CSE351, Spring 2022L08: x86-64 Programming I

Definitions

 Architecture (ISA): The parts of a processor design
that one needs to understand to write assembly code

 What is directly visible to software

 The “contract” or “blueprint” between hardware and
software

 Microarchitecture: Implementation of the
architecture

 CSE/EE 469

6

CSE351, Spring 2022L08: x86-64 Programming I

Instruction Set Architectures (Review)

 The ISA defines:

 The system’s state (e.g., registers, memory, program
counter)

 The instructions the CPU can execute

 The effect that each of these instructions will have on the
system state

7

CPU

MemoryPC

Registers

CSE351, Spring 2022L08: x86-64 Programming I

General ISA Design Decisions

 Instructions

 What instructions are available? What do they do?

 How are they encoded?

 Registers

 How many registers are there?

 How wide are they?

 Memory

 How do you specify a memory location?

8

CSE351, Spring 2022L08: x86-64 Programming I

Instruction Set Philosophies (Review)

 Complex Instruction Set Computing (CISC):
Add more and more elaborate and specialized
instructions as needed

 Lots of tools for programmers to use, but hardware must be
able to handle all instructions

 x86-64 is CISC, but only a small subset of instructions
encountered with Linux programs

 Reduced Instruction Set Computing (RISC):
Keep instruction set small and regular

 Easier to build fast hardware

 Let software do the complicated operations by composing
simpler ones

9

CSE351, Spring 2022L08: x86-64 Programming I

Mainstream ISAs

10

Macbooks & PCs
(Core i3, i5, i7, M)
x86-64 Instruction Set

Smartphone-like devices
(iPhone, iPad, Raspberry Pi)
ARM Instruction Set

Mostly research
(some traction in embedded)
RISC-V Instruction Set

http://ref.x86asm.net/coder64-abc.html
http://infocenter.arm.com/help/topic/com.arm.doc.qrc0001m/QRC0001_UAL.pdf
https://inst.eecs.berkeley.edu/~cs61c/resources/riscvcard-large.pdf

CSE351, Spring 2022L08: x86-64 Programming I

C Language

Architecture Sits at the Hardware Interface

11

x86-64

Intel Pentium 4

Intel Core 2

Intel Core i7

AMD Opteron

AMD Athlon

GCC

ARMv8
(AArch64/A64)

ARM Cortex-A53

Apple A7

Clang

Your
program

Program
B

Program
A

CompilerSource code Architecture
Different applications
or algorithms

Perform optimizations,
generate instructions

Different
implementations

Hardware
Instruction set

CSE351, Spring 2022L08: x86-64 Programming I

Writing Assembly Code? In 2022???

 Chances are, you’ll never write a program in
assembly, but understanding assembly is the key to
the machine-level execution model:

 Behavior of programs in the presence of bugs
• When high-level language model breaks down

 Tuning program performance
• Understand optimizations done/not done by the compiler

• Understanding sources of program inefficiency

 Implementing systems software
• What are the “states” of processes that the OS must manage

• Using special units (timers, I/O co-processors, etc.) inside processor!

 Fighting malicious software
• Distributed software is in binary form

12

CSE351, Spring 2022L08: x86-64 Programming I

CPU

Assembly Programmer’s View

 Programmer-visible state
 PC: the Program Counter (%rip in x86-64)

• Address of next instruction

 Named registers

• Together in “register file”

• Heavily used program data

 Condition codes

• Store status information about most recent
arithmetic operation

• Used for conditional branching 13

PC
Registers

Memory

• Code
• Data
• Stack

Addresses

Data

InstructionsCondition
Codes

 Memory
 Byte-addressable array

 Code and user data

 Includes the Stack (for
supporting procedures)

CSE351, Spring 2022L08: x86-64 Programming I

x86-64 Assembly “Data Types”

 Integral data of 1, 2, 4, or 8 bytes
 Data values

 Addresses

 Floating point data of 4, 8, 10 or 2x8 or 4x4 or 8x2
 Different registers for those (e.g. %xmm1, %ymm2)

 Come from extensions to x86 (SSE, AVX, …)

 No aggregate types such as arrays or structures
 Just contiguously allocated bytes in memory

 Two common syntaxes
 “AT&T”: used by our course, slides, textbook, gnu tools, …

 “Intel”: used by Intel documentation, Intel tools, …

 Must know which you’re reading

14

Not covered
In 351

CSE351, Spring 2022L08: x86-64 Programming I

What is a Register? (Review)

 A location in the CPU that stores a small amount of
data, which can be accessed very quickly (once every
clock cycle)

 Registers have names, not addresses
 In assembly, they start with % (e.g. %rsi)

 Registers are at the heart of assembly programming

 They are a precious commodity in all architectures, but
especially x86

15

CSE351, Spring 2022L08: x86-64 Programming I

x86-64 Integer Registers – 64 bits wide

 Can reference low-order 4 bytes (also low-order 2 & 1 bytes)

16

%r8d%r8

%r9d%r9

%r10d%r10

%r11d%r11

%r12d%r12

%r13d%r13

%r14d%r14

%r15d%r15

%rsp %esp

%eax%rax

%ebx%rbx

%ecx%rcx

%edx%rdx

%esi%rsi

%edi%rdi

%ebp%rbp

CSE351, Spring 2022L08: x86-64 Programming I

Some History: IA32 Registers – 32 bits wide

17

%esi %si

%edi %di

%esp %sp

%ebp %bp

%eax %ax %ah %al

%ecx %cx %ch %cl

%edx %dx %dh %dl

%ebx %bx %bh %bl

16-bit virtual registers
(backwards compatibility)

ge
n

e
ra

l p
u

rp
o

se

accumulate

counter

data

base

source index

destination index

stack pointer

base pointer

Name Origin
(mostly obsolete)

CSE351, Spring 2022L08: x86-64 Programming I

Memory vs. Registers

 Addresses vs. Names
 0x7FFFD024C3DC %rdi

 Big vs. Small

 ~ 8 GiB (16 x 8 B) = 128 B

 Slow vs. Fast

 ~50-100 ns sub-nanosecond timescale

 Dynamic vs. Static

 Can “grow” as needed fixed number in hardware
while program runs

18

CSE351, Spring 2022L08: x86-64 Programming I

Three Basic Kinds of Instructions (Review)

1) Transfer data between memory and register

 Load data from memory into register
• %reg = Mem[address]

 Store register data into memory
• Mem[address] = %reg

2) Perform arithmetic operation on register or memory
data
 c = a + b; z = x << y; i = h & g;

3) Control flow: what instruction to execute next

 Unconditional jumps to/from procedures

 Conditional branches
19

Remember: Memory
is indexed just like an
array of bytes!

CSE351, Spring 2022L08: x86-64 Programming I

Instruction Sizes and Operands (Review)

 Size specifiers

 b = 1-byte “byte”, w = 2-byte “word”,
l = 4-byte “long word”, q = 8-byte “quad word”

 Note that due to backwards-compatible support for 8086
programs (16-bit machines!), “word” means 16 bits = 2 bytes
in x86 instruction names

 Operand types

 Immediate: Constant integer data ($)

 Register: 1 of 16 integer registers (%)

 Memory: Consecutive bytes of memory at a computed
address (())

20

CSE351, Spring 2022L08: x86-64 Programming I

x86-64 Introduction

 Data transfer instruction (mov)

 Arithmetic operations

 Memory addressing modes

 swap example

21

CSE351, Spring 2022L08: x86-64 Programming I

Moving Data

 General form: mov_ source, destination

 Really more of a “copy” than a “move”

 Like all instructions, missing letter (_) is the size specifier

 Lots of these in typical code

22

CSE351, Spring 2022L08: x86-64 Programming I

Operand Combinations

Source Dest Src, Dest C Analog

movq

Imm
Reg movq $0x4, %rax

Mem movq $-147, (%rax)

Reg
Reg movq %rax, %rdx

Mem movq %rax, (%rdx)

Mem Reg movq (%rax), %rdx

23

 Cannot do memory-memory transfer with a single
instruction

 How would you do it?

var_a = 0x4;

*p_a = -147;

var_d = var_a;

*p_d = var_a;

var_d = *p_a;

CSE351, Spring 2022L08: x86-64 Programming I

Some Arithmetic Operations

 Binary (two-operand) Instructions:



 Beware argument
order!

 No distinction
between signed
and unsigned
• Only arithmetic vs.

logical shifts

24

Format Computation

addq src, dst dst = dst + src (dst += src)

subq src, dst dst = dst – src

imulq src, dst dst = dst * src signed mult

sarq src, dst dst = dst >> src Arithmetic

shrq src, dst dst = dst >> src Logical

shlq src, dst dst = dst << src (same as salq)

xorq src, dst dst = dst ^ src

andq src, dst dst = dst & src

orq src, dst dst = dst | src

Maximum of one
memory operand

operand size specifier

CSE351, Spring 2022L08: x86-64 Programming I

Practice Question

 Which of the following are valid implementations of
rcx = rax + rbx?

 addq %rax, %rcx
addq %rbx, %rcx

 movq $0, %rcx
addq %rbx, %rcx
addq %rax, %rcx

25

 movq %rax, %rcx
addq %rbx, %rcx

 xorq %rax, %rax
addq %rax, %rcx
addq %rbx, %rcx

CSE351, Spring 2022L08: x86-64 Programming I

Arithmetic Example

26

long simple_arith(long x, long y)

{

long t1 = x + y;

long t2 = t1 * 3;

return t2;

}

Register Use(s)

%rdi 1st argument (x)

%rsi 2nd argument (y)

%rax return value

y += x;

y *= 3;

long r = y;

return r;

simple_arith:

addq %rdi, %rsi

imulq $3, %rsi

movq %rsi, %rax

ret

CSE351, Spring 2022L08: x86-64 Programming I

Example of Basic Addressing Modes

27

void swap(long* xp, long* yp)

{

long t0 = *xp;

long t1 = *yp;

*xp = t1;

*yp = t0;

}

swap:

movq (%rdi), %rax

movq (%rsi), %rdx

movq %rdx, (%rdi)

movq %rax, (%rsi)

ret

Compiler Explorer:
https://godbolt.org/z/zc4Pcq

https://godbolt.org/z/zc4Pcq

CSE351, Spring 2022L08: x86-64 Programming I

Summary

 x86-64 is a complex instruction set computing (CISC)
architecture

 There are 3 types of operands in x86-64
• Immediate, Register, Memory

 There are 3 types of instructions in x86-64
• Data transfer, Arithmetic, Control Flow

28

