YA UNIVERSITY of WASHINGTON LO8: x86-64 Programming |

CSE351, Spring 2022

x86-64 Programming |

CSE 351 Spring 2022
Instructor:

Ruth Anderson

Teaching Assistants:
Melissa Birchfield

SKATING UPHILL LIKE THIs IS

Jacob Christy AMAZING. YEPRS OF GLIDING

Alena Dickmann RS A Oats aub 0w sopoenty

Kyrie Dowling

Ellis Haker

Maggie Jiang : -

Diya Joy e AGSEMBLY MAKES YOU
Anirudh Kumar % N PETER PROSEANES
Jim Limprasert : E“ﬁ"m’&féé‘m”%‘é%ﬁé

. PaRTS UNTIL YOU DON'T HAVE
Armin Magness | To

Hamsa Shankar

PEPENDS HOW You
WBNT TO SPEND YOUR
LIFE. SEE, My
PHILOSOPHY 15—

Dara Stotland .
Jeffery Tian http://xkcd.com/409/
Assaf Vayner

Tom Wu

Angela Xu

Effie Zheng

http://xkcd.com/409/

YA UNIVERSITY of WASHINGTON LO8: x86-64 Programming | CSE351, Spring 2022

Relevant Course Information

+ hw6 due TONIGHT (4/13) @ 11:59 pm

+» Lab 1la closes TONIGHT (4/13) @ 11:59 pm
" Submitpointer.cand lablAsynthesis.txt

= Make sure you check the Gradescope autograder output!
" Can use late day tokens to submit up until Wed 11:59 pm

+» Lab 1b, due Monday 4/18 at 11:59pm

= No major programming restrictions, but should avoid magic
numbers by using C macros (#define)

" For debugging, can use provided utility functions
print_binary_short() and print_binary_long()

= Pay attention to the output of a1sle_test and
store_test —failed tests will show you actual vs. expected

2

YA UNIVERSITY of WASHINGTON LO8: x86-64 Programming | CSE351, Spring 2022

Reading Review

+» Terminology:
" |nstruction Set Architecture (ISA): CISC vs. RISC
" |nstructions: data transfer, arithmetic/logical, control flow

- Size specifiers: b,w, 1, g
" Operands: immediates, registers, memory

- Memory operand: displacement, base register, index register, scale
factor

YA UNIVERSITY of WASHINGTON LO8: x86-64 Programming | CSE351, Spring 2022

Review Questions

+» Assume that the register %rax currently holds the

value 0x 01020304 05060708

+» Answer the questions on Ed Lessons about the
following instruction (<instr> <src> <dst>):

xorw $-1, %ax
" Operation type:
" Operand types:
" Operation width:
= (extra) Resultin %rax:

YA UNIVERSITY of WASHINGTON

Roadmap

LO8: x86-64 Programming |

CSE351, Spring 2022

C: Java: Memory & data
car *c = malloc(sizeof (car)); Car ¢ = new Car(); Integers & floats
c->miles = 100; c.setMiles (100) ; x86 assembly
c->gals = 17; c.setGals (17) ; Procedures & stacks
float mpg = get mpg(c); float mpg = Executables
free (c); c.getMPG () ; Arrays & structs
— —_ Memory & caches
Assembly get_mpg: Processes
. pushg srbp .

language: movq srsp, $rbp Virtual memory

.. Memory allocation

Popq srbp Javavs. C

ret *
Machine 0111010000011000 \/

de: 100011010000010000000010 A \
coae. 1000100111000010 A
110000011111101000011111 Windows 10 05X Yosemire s
| [|
v v

Computer

system:

CSE351, Spring 2022

YA UNIVERSITY of WASHINGTON LO8: x86-64 Programming |

Definitions

+ Architecture (ISA): The parts of a processor design
that one needs to understand to write assembly code

" What is directly visible to software
" The “contract” or “blueprint” between hardware and
software

+» Microarchitecture: Implementation of the
architecture
= CSE/EE 469

YA UNIVERSITY of WASHINGTON LO8: x86-64 Programming |

Instruction Set Architectures (Review)

«» The ISA defines:

" The system’s state (e.g., registers, memory, program

counter)

" The instructions the CPU can execute

= The effect that each of these instructions will have on the

system state
CPU

PC

Registers

Memory

CSE351, Spring 2022

YA UNIVERSITY of WASHINGTON LO8: x86-64 Programming |

General ISA Design Decisions

< Instructions

" What instructions are available? What do they do?
*" How are they encoded?

+» Registers
" How many registers are there?
" How wide are they?

«» Memory

" How do you specify a memory location?

CSE351, Spring 2022

YA UNIVERSITY of WASHINGTON LO8: x86-64 Programming | CSE351, Spring 2022

Instruction Set Philosophies (Review)

«» Complex Instruction Set Computing (CISC):

Add more and more elaborate and specialized
instructions as needed

" |ots of tools for programmers to use, but hardware must be
able to handle all instructions

= x86-64 is CISC, but only a small subset of instructions
encountered with Linux programs

+ Reduced Instruction Set Computing (RISC):

Keep instruction set small and regular
= Easier to build fast hardware

= Let software do the complicated operations by composing
simpler ones

YA UNIVERSITY of WASHINGTON

LO8: x86-64 Programming |

Mainstream ISAs

intel,

x86
Designer Intel, AMD
Bits 16-bit, 32-bit and 64-bit
Introduced 1978 (16-bit), 1985 (32-bit), 2003
(64-bit)

Design CIsC

Type Register—memory
Encoding Variable (1 to 15 bytes)
Branching Condition code

Endianness Little

Macbooks & PCs
(Core i3, i5,i7, M)
X86-64 Instruction Set

ARM

ARM

Designer Arm Holdings
Bits 32-bit, 64-bit
Introduced 1985

Design RISC

Type Register-Register

Encoding AArch64/A64 and AArch32/A32
use 32-bit instructions, T32
(Thumb-2) uses mixed 16- and
32-bit instructions; ARMv7 user-
space compatibility.["]

Branching Ceondition code, compare and
branch

Endianness Bi (little as default)

Smartphone-like devices
(iPhone, iPad, Raspberry Pi)
ARM Instruction Set

CSE351, Spring 2022

RISC

RISC-V
Designer University of California,
Berkeley
Bits 32-64-128
Introduced 2010
Design RISC
Type Load-store
Encoding Variable

Endianness Littlel'I[3]

Mostly research
(some traction in embedded)
RISC-V Instruction Set

10

http://ref.x86asm.net/coder64-abc.html
http://infocenter.arm.com/help/topic/com.arm.doc.qrc0001m/QRC0001_UAL.pdf
https://inst.eecs.berkeley.edu/~cs61c/resources/riscvcard-large.pdf

YA UNIVERSITY of WASHINGTON

LO8: x86-64 Programming |

Architecture Sits at the Hardware Interface

Source code

Different applications
or algorithms

(
C Language

Program

A

Compiler

Perform optimizations,
generate instructions

—— - —

Program

B

GCC

Your

program

'

——————

Architecture Hardware

Instruction set Different
implementations

CSE351, Spring 2022

Intel Pentium 4

Intel Core 2

———————————

Intel Core i7

AMD Opteron

AMD Athlon

ARMv8

1

: ARM Cortex-A53
1 (AArch64/A64)! <
1
___________ ’ Apple A7

11

YA UNIVERSITY of WASHINGTON LO8: x86-64 Programming | CSE351, Spring 2022

Writing Assembly Code? In 20227?7??

+» Chances are, you’ll never write a program in
assembly, but understanding assembly is the key to
the machine-level execution model:

= Behavior of programs in the presence of bugs

- When high-level language model breaks down

" Tuning program performance

- Understand optimizations done/not done by the compiler

- Understanding sources of program inefficiency
" Implementing systems software

- What are the “states” of processes that the OS must manage

- Using special units (timers, |/O co-processors, etc.) inside processor!
" Fighting malicious software

- Distributed software is in binary form
12

YA UNIVERSITY of WASHINGTON LO8: x86-64 Programming |

CSE351, Spring 2022

Assembly Programmer’s View

CPU Addresses Memory
Registers ’

e Cod

PC Data 0de

« * Data

Condition Instructions e Stack

Codes
+» Programmer-visible state
= PC: the Program Counter (3rip in x86-64)

« Address of next instruction

= Named registers + Memory
- Together in “register file” = Byte-addressable array
 Heavily used program data " Code and user data

= Condition codes " |ncludes the Stack (for
- Store status information about most recent supporting procedures)

arithmetic operation

« Used for conditional branching 13

YA UNIVERSITY of WASHINGTON LO8: x86-64 Programming | CSE351, Spring 2022

x86-64 Assembly “Data Types”

K/
0‘0

K/
0‘0

K/
0‘0

)
0.0

Integral data of 1, 2, 4, or 8 bytes
= Data values
= Addresses

Floating point data of 4, 8, 10 or 2x8 or 4x4 or 8x2 |
= Different registers for those (e.g. sxmml, $ymm2)

= Come from extensions to x86 (SSE, AVX, ...)

i Not covered
In 351

No aggregate types such as arrays or structures
= Just contiguously allocated bytes in memory
Two common syntaxes

= “AT&T”: used by our course, slides, textbook, gnu tools, ...
= “Intel”: used by Intel documentation, Intel tools, ...
"= Must know which you’re reading

14

YA UNIVERSITY of WASHINGTON LO8: x86-64 Programming |

CSE351, Spring 2022

What is a Register? (Review)

« A location in the CPU that stores a small amount of

data, which can be accessed very quickly (once every
clock cycle)

+ Registers have names, not addresses
" |n assembly, they start with % (e.g. $rsi)

+» Registers are at the heart of assembly programming

" They are a precious commodity in all architectures, but
especially x86

15

YA UNIVERSITY of WASHINGTON

x86-64 Integer Registers — 64 bits wide

LO8: x86-64 Programming |

CSE351, Spring 2022

srax %eax
srbx $ebx
srex %ecx
Srdx $edx
grsi %esi
srdi $edi
%rsp $esp
srbp sebp

sr8 sr8d

$r9 $r9d

%$rlo0 $rlod
Srll srlld
$rl2 srl2d
$rl3 $rl13d
$rld $rl4dd
$rlS $rl5d

= Can reference low-order 4 bytes (also low-order 2 & 1 bytes)

16

YA UNIVERSITY of WASHINGTON

LO8: x86-64 Programming |

CSE351, Spring 2022

Some History: IA32 Registers — 32 bits wide

general purpose

A

~—

$eax %ax %ah %al
zecx $cx %ch $cl
sedx %dx %dh %dl
sebx $bx $bh $bl
sesi $si
sedi sdi
zesp %sp
sebp sbp
\)

\

16-bit virtual registers
(backwards compatibility)

accumulate
counter

data

base

source index
destination index
stack pointer

base pointer

Name Origin
(mostly obsolete)
17

YA UNIVERSITY of WASHINGTON

Memory

Addresses
" Ox7FFFD024C3DC

Big
= ~8GIB

Slow
= ~50-100 ns

Dynamic

"= Can “grow” as needed
while program runs

vs.

vs.

vs.

vs.

vs.

LO8: x86-64 Programming | CSES351, Spring 2022

Registers

Names

Srdi

Small
(16 x 8 B) =128 B

Fast

sub-nanosecond timescale

Static

fixed number in hardware

18

YA UNIVERSITY of WASHINGTON LO8: x86-64 Programming | CSE351, Spring 2022

Three Basic Kinds of Instructions (Review)

1) Transfer data between memory and register

" |oad data from memory into register

- $reg = Mem[address] Remember: Memory
is indexed just like an
array of bytes!

= Store register data into memory
- Mem[address] = $Sreqg

2) Perform arithmetic operation on register or memory
data

"c =a + by z = X <LK y; 1 =h&g;

3) Control flow: what instruction to execute next
® Unconditional jumps to/from procedures
" Conditional branches

19

YA UNIVERSITY of WASHINGTON LO8: x86-64 Programming | CSE351, Spring 2022

Instruction Sizes and Operands (Review)

+ Size specifiers
" b =1-byte “byte”, w = 2-byte “word”,
1 = 4-byte “long word”, q = 8-byte “quad word”

" Note that due to backwards-compatible support for 8086
programs (16-bit machines!), “word” means 16 bits = 2 bytes
In Xx86 instruction names

+» Operand types
" Immediate: Constant integer data ($)
" Register: 1 of 16 integer registers (%)

= Memory: Consecutive bytes of memory at a computed
address (())

20

YA UNIVERSITY of WASHINGTON LO8: x86-64 Programming |

x86-64 Introduction

+ Data transfer instruction (mov)
+» Arithmetic operations

+» Memory addressing modes
= swap example

CSE351, Spring 2022

21

YA UNIVERSITY of WASHINGTON LO8: x86-64 Programming | CSE351, Spring 2022

Moving Data

+ General form: mov_ source, destination
= Really more of a “copy” than a “move”
= Like all instructions, missing letter (__) is the size specifier
" |ots of these in typical code

22

YA UNIVERSITY of WASHINGTON LO8: x86-64 Programming | CSE351, Spring 2022

Operand Combinations

Source Dest Src, Dest C Analog
4 Reg movqg $0x4, %rax var a = 0x4;
Imm
Mem movg $-147, (%rax) *p a = -147;
movq< " Reg movg Srax, S5rdx var d = var_ a;
€8
Mem movg %rax, (%5rdx) *p d = var_a;
\I\/Iem Reg movg (%rax), S%rdx var d = *p a;

+» Cannot do memory-memory transfer with a single
instruction

" How would you do it?

23

YA UNIVERSITY of WASHINGTON LO8: x86-64 Programming | CSE351, Spring 2022

Some Arithmetic Operations

+ Binary (two-operand) Instructions:

- [""axim“mf“e] ____Format | Computation _

memory operand addq src, dst dst=dst+src (dst+=src)

" Beware argument subq src, dst dst=dst—src

order! imulq src, dst dst=dst*src signed mult
= No distinction sarq src, dst dst=dst>>src Arithmetic
between signed shrq src, dst dst=dst>>src Logical
and unsigned shlg src, dst dst=dst<<src (sameassalq)
« Only arithmetic vs. xorq src, dst dst=dst”src
logical shifts andq src, dst dst=dst& src

orq src, dst dst=dst|[src

t operand size specifier

24

YA UNIVERSITY of WASHINGTON LO8: x86-64 Programming | CSE351, Spring 2022

Practice Question

+» Which of the following are valid implementations of
rcx = rax + rbx?

" addq %rax, %rcx = movq %rax, %rcx
addqg %rbx, %rcx addq %rbx, %rcx
" movqg $0, %rcx = Xorq %rax, %rax
addq %rbx, %rcx addq %rax, %rcx

addq %rax, %rcx addqg %rbx, %rcx

25

YA UNIVERSITY of WASHINGTON

Arithmetic Example

LO8: x86-64 Programming |

CSE351, Spring 2022

Cnegier | Usel)

15t argument (x)
2" argument (y)

return value

srdi
. . Srsi
long simple arith(long x, long y)
{ srax
long tl = x + y;
long t2 = tl1 * 3;
return t2;
| <k\\\‘~9_
y =
y*:
long

return r;

r = Vs

simple arith:

addq srdi,
imulqg $3,
movq $rsi,

ret

$rsi
$rsi
$rax

26

YA UNIVERSITY of WASHINGTON LO8: x86-64 Programming |

CSE351, Spring 2022

Example of Basic Addressing Modes

void swap (long* xp, long* yp)
{

long t0 = *xp;

long tl = *yp;

*Xp = tl;
*yp = t0;

}

swap :
movq (3srdi), %rax
movq (3rsi), %srdx
movq Srdx, (%rdi)
movq Srax, (%rsi)

ret

Compiler Explorer:
https://godbolt.org/z/zc4Pcq

27

https://godbolt.org/z/zc4Pcq

YA UNIVERSITY of WASHINGTON LO8: x86-64 Programming | CSE351, Spring 2022

Summary

+» X86-64 is a complex instruction set computing (CISC)
architecture

" There are 3 types of operands in x86-64

- Immediate, Register, Memory

" There are 3 types of instructions in x86-64

- Data transfer, Arithmetic, Control Flow

28

