Floating Point II

CSE 351 Spring 2022 Instructor:
Ruth Anderson

Teaching Assistants:

Melissa Birchfield Jacob Christy Alena Dickmann Kyrie Dowling Ellis Haker
Maggie Jiang Diya Joy
Anirudh Kumar Jim Limprasert
Armin Magness
Hamsa Shankar
Dara Stotland
Jeffery Tian
Assaf Vayner
Tom Wu
Angela Xu
Effie Zheng

http://www.smbc-comics.com/?id=2999

Relevant Course Information

* hw5 due Monday (4/11) @ 11:59 pm
* Lab 1a due TONIGHT (4/11) @ 11:59 pm
- Submit pointer.c and lab1Asynthesis.txt
- Make sure you check the Gradescope autograder output!
- Can use late day tokens to submit up until Wed 11:59 pm
* Lab 1b, due 4/18
- Submit aisle_manager.c, store_client.c, and lab1Bsynthesis.txt

Getting Help with 351

* Lecture recordings, readings, inked slides, textbook readings
* Form a study group!
- Good for everything but labs, which should be done in pairs
- Communicate regularly, use the class terminology, ask and answer each others' questions, show up to OH together
* Attend office hours
- Use the OH queue, but can also chat with other students there - help each other learn!
* Post on Ed Discussion
* Request a 1-on-1 meeting
- Available on a limited basis for special circumstances

Reading Review

* Terminology:
- Special cases
- Denormalized numbers
- $\pm \infty$
- Not-a-Number (NaN)
- Limits of representation
- Overflow
- Underflow
- Rounding

Review Questions

* What is the value of the following floats?
- 0x00000000
- 0xFF800000
* For the following code, what is the smallest value of n that will encounter a limit of representation?

$$
\begin{aligned}
& \text { float } f=1.0 ; / / 2 \wedge 0 \\
& \text { for }(\text { int } i=0 ; i<n ;++i) \\
& f *=1024 ; / / 1024=2 \wedge 10 \\
& \text { printf("f }=\% \text { f } \backslash n ", f) ;
\end{aligned}
$$

Floating Point Encoding Summary (Review)

\mathbf{E}	\mathbf{M}	Meaning
0×00	0	± 0
0×00	non-zero	\pm denorm num
$0 \times 01-0 \times F E$	anything	\pm norm num
$0 \times F F$	0	$\pm \infty$
$0 \times F F$	non-zero	NaN

Special Cases

* But wait... what happened to zero?
- Special case: E and M all zeros $=0$
- Two zeros! But at least $0 x 00000000=0$ like integers
* $\mathrm{E}=0 \times \mathrm{FFF}, \mathrm{M}=0: \pm \infty$
- e.g., division by 0
- Still work in comparisons!
$* E=0 x F F, \mathrm{M} \neq 0$: Not a Number (NaN)
- e.g., square root of negative number, $0 / 0, \infty-\infty$
- NaN propagates through computations
- Value of M can be useful in debugging

New Representation Limits

* New largest value (besides ∞)?
- $\mathrm{E}=0 \times \mathrm{FF}$ has now been taken!
- $\mathrm{E}=0 \times \mathrm{FE}$ has largest: $1.1 \ldots 1_{2} \times 2^{127}=2^{128}-2^{104}$
* New numbers closest to 0:
- $\mathrm{E}=0 \times 00$ taken; next smallest is $\mathrm{E}=0 \times 01$
- $a=1.0 . . .00_{2} \times 2^{-126}=2^{-126}$
- $b=1.0 \ldots 01_{2} \times 2^{-126}=2^{-126}+2^{-149}$
- Normalization and implicit 1 are to blame
- Special case: $\mathrm{E}=0, \mathrm{M} \neq 0$ are denormalized numbers

Denorm Numbers

* Denormalized numbers
- No leading 1
- Uses implicit exponent of -126 even though $E=0 x 00$
* Denormalized numbers close the gap between zero and the smallest normalized number
- Smallest norm: $\pm 1.0 . . .00_{\mathrm{two}} \times 2^{-126}= \pm 2^{-126}$

So much

- Smallest denorm: $\pm 0.0 \ldots 01_{\text {two }} \times 2^{-126}= \pm 2^{-149}$
- There is still a gap between zero and the smallest denormalized number

Floating Point Interpretation Flow Chart

\square = special case

Floating point topics

* Fractional binary numbers
* IEEE floating-point standard
* Floating-point operations and rounding
* Floating-point in C
* There are many more details that we won't cover
- It's a 58-page standard...

Tiny Floating Point Representation

* We will use the following 8-bit floating point representation to illustrate some key points:

S	E	M
1	4	3

* Assume that it has the same properties as IEEE floating point:
- bias =
- encoding of $-0=$
- encoding of $+\infty=$
- encoding of the largest (+) normalized \# =
- encoding of the smallest (+) normalized \# =

Distribution of Values (Review)

* What ranges are NOT representable?
- Between largest norm and infinity Overflow (Exp too large)
- Between zero and smallest denorm Underflow (Exp too small)
- Between norm numbers? Rounding
* Given a FP number, what's the bit pattern of the next largest representable number?
- What is this "step" when Exp $=0$?
- What is this "step" when Exp $=100$?
* Distribution of values is denser toward zero

Floating Point Rounding

This is extra (non-testable) material

* The IEEE 754 standard actually specifies different rounding modes:
- Round to nearest, ties to nearest even digit
- Round toward $+\infty$ (round up)
- Round toward $-\infty$ (round down)
- Round toward 0 (truncation)
* In our tiny example:
- Man = 1.00101 rounded to $\mathrm{M}=0 \mathrm{0b001}$
- Man = 1.00111 rounded to $\mathrm{M}=0 \mathrm{Ob} 010$
- Man = 1.00110 rounded to $M=0 b 010$
- Man = 1.00010 rounded to $\mathrm{M}=0 \mathrm{Ob00}$

Floating Point Operations: Basic Idea

$$
\text { Value }=(-1)^{S} \times \text { Mantissa } \times 2^{\text {Exponent }}
$$

S	E	M

$* x+_{f} Y=R o u n d(x+y)$
$* x *_{f} y=\operatorname{Round}(x * y)$

* Basic idea for floating point operations:
- First, compute the exact result
- Then round the result to make it fit into the specified precision (width of M)
- Possibly over/underflow if exponent outside of range

Mathematical Properties of FP Operations

* Overflow yields $\pm \infty$ and underflow yields 0
* Floats with value $\pm \infty$ and NaN can be used in operations
- Result usually still $\pm \infty$ or NaN, but not always intuitive
* Floating point operations do not work like real math, due to rounding
- Not associative: (3.14+1e100)-1e100 !=3.14+(1e100-1e100)

0
3.14

- Not distributive: $100 *(0.1+0.2) \quad!=100 * 0.1+100 * 0.2$

$$
30.000000000000003553
$$

- Not cumulative
- Repeatedly adding a very small number to a large one may do nothing

Floating Point Encoding Flow Chart

Limits of Interest

* The following thresholds will help give you a sense of when certain outcomes come into play, but don't worry about the specifics:
- FOver $=2^{\text {bias+1 }}=2^{8}$
- This is just larger than the largest representable normalized number
- FDenorm $=2^{1-\text { bias }}=2^{-6}$
- This is the smallest representable normalized number
- FUnder $=2^{1-\text { bias-m }}=2^{-9}$
- m is the width of the mantissa field
- This is the smallest representable denormalized number

Floating Point in C

* Two common levels of precision:

float	1.0 f	single precision (32-bit)
double	1.0	double precision (64-bit)

* \#include <math.h> to get INFINITY and NAN constants
*. Equality (==) comparisons between floating point numbers are tricky, and often return unexpected results, so just avoid them!

Floating Point Conversions in C

* Casting between int, float, and double changes the bit representation
- int \rightarrow float
- May be rounded (not enough bits in mantissa: 23)
- Overflow impossible
- int or float \rightarrow double
- Exact conversion (all 32-bit ints representable)
- long \rightarrow double
- Depends on word size (32-bit is exact, 64-bit may be rounded)
- double or float \rightarrow int
- Truncates fractional part (rounded toward zero)
- "Not defined" when out of range or NaN: generally sets to Tmin (even if the value is a very big positive)

Exploration Question

* We execute the following code in C. How many bytes are the same (value and position) between i and f ?

```
int i = 384; // 2^8 + 2^7
float f = (float) i;
```

A. 0 bytes
B. 1 byte
C. 2 bytes
D. 3 bytes
E. We're lost...

Floating Point Summary

* Floats also suffer from the fixed number of bits available to represent them
- Can get overflow/underflow
- "Gaps" produced in representable numbers means we can lose precision, unlike ints
- Some "simple fractions" have no exact representation (e.g. 0.2)
- "Every operation gets a slightly wrong result"
* Floating point arithmetic not associative or distributive
- Mathematically equivalent ways of writing an expression may compute different results
* Never test floating point values for equality!
* Careful when converting between ints and floats!

Number Representation Really Matters

* 1991: Patriot missile targeting error
- clock skew due to conversion from integer to floating point
* 1996: Ariane 5 rocket exploded (\$1 billion)
- overflow converting 64-bit floating point to 16-bit integer
* 2000: Y2K problem
- limited (decimal) representation: overflow, wrap-around
* 2038: Unix epoch rollover
- Unix epoch = seconds since 12am, January 1, 1970
- signed 32-bit integer representation rolls over to TMin in 2038
* Other related bugs:
- 1982: Vancouver Stock Exchange 10\% error in less than 2 years
- 1994: Intel Pentium FDIV (floating point division) HW bug (\$475 million)
- 1997: USS Yorktown "smart" warship stranded: divide by zero
- 1998: Mars Climate Orbiter crashed: unit mismatch (\$193 million)

Summary

\mathbf{E}	\mathbf{M}	Meaning
0×00	0	± 0
0×00	non-zero	\pm denorm num
$0 \times 01-0 \times F E$	anything	\pm norm num
$0 \times F F$	0	$\pm \infty$
$0 \times F F$	non-zero	NaN

* Floating point encoding has many limitations
- Overflow, underflow, rounding
- Rounding is a HUGE issue due to limited mantissa bits and gaps that are scaled by the value of the exponent
- Floating point arithmetic is NOT associative or distributive
* Converting between integral and floating point data types does change the bits

An example that applies the IEEE Floating Point concepts to a smaller (8-bit) representation scheme. These slides expand on material covered today, so while you don't need to read these, the information is "fair game."

Tiny Floating Point Example

* 8-bit Floating Point Representation
- The sign bit is in the most significant bit (MSB)
- The next four bits are the exponent, with a bias of $2^{4-1}-1=7$
- The last three bits are the mantissa
* Same general form as IEEE Format
- Normalized binary scientific point notation
- Similar special cases for 0 , denormalized numbers, NaN, ∞

Dynamic Range (Positive Only)

	S	E	M	Exp	Value	
Denormalized numbers	0	0000	000	-6	0	closest to zero
	0	0000	001	-6	$1 / 8 * 1 / 64=1 / 512$	
	0	0000	010	-6	$2 / 8 * 1 / 64=2 / 512$	
	...					
	0	0000	110	-6	$6 / 8 * 1 / 64=6 / 512$	
	0	0000	111	-6	$7 / 8 * 1 / 64=7 / 512$	largest denorm
Normalized numbers	0	0001	000	-6	$8 / 8 * 1 / 64=8 / 512$	smallest norm
	0	0001	001	-6	$9 / 8 * 1 / 64=9 / 512$	
	\ldots					
	0	0110	110	-1	$14 / 8 * 1 / 2=14 / 16$	
	0	0110	111	-1	$15 / 8 * 1 / 2=15 / 16$	closest to 1 below
	0	0111	000	0	$8 / 8 * 1=1$	
	0	0111	001	0	$9 / 8 * 1=9 / 8$	closest to 1 above
	0	0111	010	0	$10 / 8 * 1=10 / 8$	
	...					
	0	1110	110	7	$14 / 8 * 128=224$	
	0	1110	111	7	$15 / 8 * 128=240$	largest norm
	0	1111	000	n / a	inf	

Special Properties of Encoding

* Floating point zero (0^{+}) exactly the same bits as integer zero
- All bits $=0$
* Can (Almost) Use Unsigned Integer Comparison
- Must first compare sign bits
- Must consider $0^{-}=0^{+}=0$
- NaNs problematic
- Will be greater than any other values
- What should comparison yield?
- Otherwise OK
- Denorm vs. normalized
- Normalized vs. infinity

