# Floating Point II

CSE 351 Spring 2022 Instructor:

**Ruth Anderson** 

#### **Teaching Assistants:**

Melissa Birchfield

**Jacob Christy** 

Alena Dickmann

**Kyrie Dowling** 

Ellis Haker

Maggie Jiang

Diya Joy

Anirudh Kumar

Jim Limprasert

**Armin Magness** 

Hamsa Shankar

**Dara Stotland** 

Jeffery Tian

Assaf Vayner

Tom Wu

Angela Xu

Effie Zheng







http://www.smbc-comics.com/?id=2999

#### **Relevant Course Information**

- hw5 due Monday (4/11) @ 11:59 pm
- ❖ Lab 1a due TONIGHT (4/11) @ 11:59 pm
  - Submit pointer.c and lab1Asynthesis.txt
  - Make sure you check the Gradescope autograder output!
  - Can use late day tokens to submit up until Wed 11:59 pm
- Lab 1b, due 4/18
  - Submit aisle\_manager.c, store\_client.c, and lab1Bsynthesis.txt

## **Getting Help with 351**

- Lecture recordings, readings, inked slides, textbook readings
- Form a study group!
  - Good for everything but labs, which should be done in pairs
  - Communicate regularly, use the class terminology, ask and answer each others' questions, show up to OH together
- Attend office hours
  - Use the OH queue, but can also chat with other students there – help each other learn!
- Post on Ed Discussion
- Request a 1-on-1 meeting
  - Available on a limited basis for special circumstances

#### **Reading Review**

- Terminology:
  - Special cases
    - Denormalized numbers
    - ±∞
    - Not-a-Number (NaN)
  - Limits of representation
    - Overflow
    - Underflow
    - Rounding

#### **Review Questions**

What is the value of the following floats?

For the following code, what is the smallest value of n that will encounter a limit of representation?

float 
$$f = 1.0$$
; //  $2 \times 0$   
for (int  $i = 0$ ;  $i < n$ ;

# Floating Point Encoding Summary (Review)

|                                    | E           | M        | Meaning      |  |  |  |  |  |  |
|------------------------------------|-------------|----------|--------------|--|--|--|--|--|--|
| smallest E                         | 0x00        | 0        | ± 0          |  |  |  |  |  |  |
| (all 0's)                          | 0x00        | non-zero | ± denorm num |  |  |  |  |  |  |
| everything { elsc                  | 0x01 – 0xFE | anything | ± norm num   |  |  |  |  |  |  |
| largest E                          | 0xFF        | 0        | ± ∞          |  |  |  |  |  |  |
| largest E)                         | OxFF        | non-zero | NaN          |  |  |  |  |  |  |
| 2112                               |             |          |              |  |  |  |  |  |  |
| 0000 000 1 1111110<br>1 = 5.254 EE |             |          |              |  |  |  |  |  |  |
| 1-127 254-127<br>-126 127 EXP      |             |          |              |  |  |  |  |  |  |

#### **Special Cases**

- But wait... what happened to zero?
  - Special case: E and M all zeros = 0
- $\star$  E = 0xFF, M = 0:  $\pm \infty$ 
  - *e.g.,* division by 0
  - Still work in comparisons!
- $\star$  E = 0xFF, M  $\neq$  0: Not a Number (NaN)
  - e.g., square root of negative number, 0/0,  $\infty-\infty$
  - NaN propagates through computations
  - Value of M can be useful in debugging (tells you cause of NaN)

#### **New Representation Limits**

- ❖ New largest value (besides  $\infty$ )?
  - E = 0xFF has now been taken!
  - E = 0xFE has largest:  $1.1...1_2 \times 2^{127} = 2^{128} 2^{104}$
- New numbers closest to 0:
  - E = 0x00 taken; next smallest is E = 0x01
  - $a = 1.0...00_2 \times 2^{-126} = 2^{-126}_{23}$
  - $b = 1.0...01_2 \times 2^{-126} = 2^{-126} + 2^{-149}$
  - Normalization and implicit 1 are to blame
  - Special case: E = 0, M ≠ 0 are denormalized numbers (0.M)
    Normalized: 1.M



#### **Denorm Numbers**

This is extra (non-testable) material

- Denormalized numbers
  - No leading 1
  - Uses implicit exponent of -126 even though E = 0x00
- Denormalized numbers close the gap between zero and the smallest normalized number
  - Smallest norm:  $(\pm 1.0...00_{two} \times 2^{-126} = \pm 2^{-126})$  So much closer to 0
  - Smallest denorm:  $\pm 0.0...01_{two} \times 2^{-126} = \pm 2^{-149}$ 
    - There is still a gap between zero and the smallest denormalized number

#### Floating Point Interpretation Flow Chart



= special case

#### Floating point topics

- Fractional binary numbers
- IEEE floating-point standard
- Floating-point operations and rounding
- Floating-point in C

- There are many more details that we won't cover
  - It's a 58-page standard...

# **Tiny Floating Point Representation**

We will use the following 8-bit floating point representation to illustrate some key points:



- Assume that it has the same properties as IEEE floating point:
  - bias =  $2^{w-1} 1 = 2^{y-1} 1 = 2^3 1 = 7$
  - encoding of =0 = 0 | 0000 000  $\rightarrow$  0x80
  - encoding of  $+\infty = 0b \ 0 \ 1111 \ 000 \ \rightarrow 0 \times 78$
  - encoding of the largest (+) normalized # = 06 0 1110 111
  - encoding of the smallest (+) normalized # =  $\frac{0}{1}$  0 000  $\frac{0}{1}$  000  $\frac{1}{1}$  0×21.7

## **Distribution of Values (Review)**

- What ranges are NOT representable?
  - Between largest norm and infinity Overflow (Exp too large)

L07: Floating Point II

- Between zero and smallest denorm Underflow (Exp too small)
- Between norm numbers? Rounding
- ♣ Given a FP number, what's the bit pattern of the next largest representable number? If M = 050...00, then  $2^{E_{eff}} \times 1.0$  what is this "step" when Exp = 0?  $2^{-23}$ 
  - What is this "step" when Exp = 100?
    2<sup>77</sup>
- Distribution of values is denser toward zero



#### **Floating Point Rounding**

This is extra (non-testable) material

- The IEEE 754 standard actually specifies different rounding modes:
  - Round to nearest, ties to nearest even digit
    - Round toward +∞ (round up)
    - Round toward  $-\infty$  (round down)
    - Round toward 0 (truncation)
- In our tiny example:
  - Man = 1.001/01 rounded to M = 0b001 ()
  - Man = 1.001/11 rounded to M = 0b010 (40)
  - Man = 1.001/10 rounded to M = 0b010 (up)
  - Man = 1.000/10 rounded to M = 0b000 (bun)



#### Floating Point Operations: Basic Idea

Value =  $(-1)^{S} \times Mantissa \times 2^{Exponent}$ 



$$\star x +_f y = Round(x + y)$$

$$\star x \star_f y = Round(x \star y)$$

- Basic idea for floating point operations:
  - First, compute the exact result
  - Then round the result to make it fit into the specified precision (width of M)
    - Possibly over/underflow if exponent outside of range

## **Mathematical Properties of FP Operations**

- \* Overflow yields  $\pm \infty$  and underflow yields 0
- ❖ Floats with value ±∞ and NaN can be used in operations
  - Result usually still  $\pm \infty$  or NaN, but not always intuitive
- Floating point operations do not work like real math, due to rounding
  314
  16100

  - Not distributive: 100\*(0.1+0.2) != 100\*0.1+100\*0.2
    30.000000000000003553 30
  - Not cumulative
    - Repeatedly adding a very small number to a large one may do nothing

#### **Floating Point Encoding Flow Chart**



#### **Limits of Interest**

This is extra (non-testable) material

- The following thresholds will help give you a sense of when certain outcomes come into play, but don't worry about the specifics:
  - **FOver** =  $2^{\text{bias}+1} = 2^8$ 
    - This is just larger than the largest representable normalized number
  - **FDenorm** =  $2^{1-\text{bias}} = 2^{-6}$ 
    - This is the smallest representable normalized number
  - FUnder =  $2^{1-\text{bias}-m} = 2^{-9}$ 
    - m is the width of the mantissa field
    - This is the smallest representable denormalized number

#### **Floating Point in C**



Two common levels of precision:

- \* #include <math.h> to get INFINITY and NAN constants <float.h> for additional constants
- Equality (==) comparisons between floating point numbers are tricky, and often return unexpected results, so just avoid them!

#### Floating Point Conversions in C



- Casting between int, float, and double changes the bit representation
  - int → float
    - May be rounded (not enough bits in mantissa: 23)
    - Overflow impossible
  - int or float → double
    - Exact conversion (all 32-bit ints representable)
  - long  $\rightarrow$  double
    - Depends on word size (32-bit is exact, 64-bit may be rounded)
  - double or float → int
    - Truncates fractional part (rounded toward zero)
    - "Not defined" when out of range or NaN: generally sets to Tmin (even if the value is a very big positive)

#### **Exploration Question**

E. We're lost...

• We execute the following code in C. How many bytes are the same (value and position) between i and f?

```
int i = 384; // 2^8 + 2^7
float f = (float) i;

A. 0 bytes

B. 1 byte

C. 2 bytes

i stored as 0x 00 00 01 80
```

f stored as 0x 43 CO 00 00

#### **Floating Point Summary**

- Floats also suffer from the fixed number of bits available to represent them
  - Can get overflow/underflow
  - "Gaps" produced in representable numbers means we can lose precision, unlike ints
    - Some "simple fractions" have no exact representation (e.g. 0.2)
    - "Every operation gets a slightly wrong result"
- Floating point arithmetic not associative or distributive
  - Mathematically equivalent ways of writing an expression may compute different results
- ♦ Never test floating point values for equality!
- Careful when converting between ints and floats!

#### **Number Representation Really Matters**

- 1991: Patriot missile targeting error
  - clock skew due to conversion from integer to floating point
- 1996: Ariane 5 rocket exploded (\$1 billion)
  - overflow converting 64-bit floating point to 16-bit integer
- 2000: Y2K problem
  - limited (decimal) representation: overflow, wrap-around
- 2038: Unix epoch rollover
  - Unix epoch = seconds since 12am, January 1, 1970
  - signed 32-bit integer representation rolls over to TMin in 2038

#### Other related bugs:

- 1982: Vancouver Stock Exchange 10% error in less than 2 years
- 1994: Intel Pentium FDIV (floating point division) HW bug (\$475 million)
- 1997: USS Yorktown "smart" warship stranded: divide by zero
- 1998: Mars Climate Orbiter crashed: unit mismatch (\$193 million)

#### **Summary**

| E           | M        | Meaning      |
|-------------|----------|--------------|
| 0x00        | 0        | ± 0          |
| 0x00        | non-zero | ± denorm num |
| 0x01 – 0xFE | anything | ± norm num   |
| 0xFF        | 0        | ± ∞          |
| 0xFF        | non-zero | NaN          |

- Floating point encoding has many limitations
  - Overflow, underflow, rounding
  - Rounding is a HUGE issue due to limited mantissa bits and gaps that are scaled by the value of the exponent
  - Floating point arithmetic is NOT associative or distributive
- Converting between integral and floating point data types does change the bits

# BONUS SLIDES

An example that applies the IEEE Floating Point concepts to a smaller (8-bit) representation scheme. These slides expand on material covered today, so while you don't need to read these, the information is "fair game."

## **Tiny Floating Point Example**



- 8-bit Floating Point Representation
  - The sign bit is in the most significant bit (MSB)
  - The next four bits are the exponent, with a bias of  $2^{4-1}-1=7$
  - The last three bits are the mantissa
- Same general form as IEEE Format
  - Normalized binary scientific point notation
  - Similar special cases for 0, denormalized numbers, NaN, ∞

CSE351, Spring 2022

# **Dynamic Range (Positive Only)**

|                         | S E                        | M          | Ехр            | Value                                             |                    |
|-------------------------|----------------------------|------------|----------------|---------------------------------------------------|--------------------|
| Denormalized<br>numbers | 0 0000                     | 001        | -6<br>-6<br>-6 | $0 \\ 1/8*1/64 = 1/512 \\ 2/8*1/64 = 2/512$       | closest to zero    |
| Humbers                 |                            | 111        | -6<br>-6       | 6/8*1/64 = 6/512<br>7/8*1/64 = 7/512              | •                  |
|                         | 0 0001                     |            | -6<br>-6       |                                                   | smallest norm      |
| Normalized              | 0 0110<br>0 0110<br>0 0111 | 111        | -1<br>-1<br>0  | 14/8*1/2 = 14/16<br>15/8*1/2 = 15/16<br>8/8*1 = 1 | closest to 1 below |
| numbers                 | 0 0111                     | 001        | 0              | 9/8*1 = 9/8<br>10/8*1 = 10/8                      | closest to 1 above |
|                         | <br>0 1110<br>0 1110       | 110<br>111 | 7<br>7         | 14/8*128 = 224<br>15/8*128 = 240                  | largest norm       |
|                         | 0 1111                     | 000        | n/a            | inf                                               |                    |

## **Special Properties of Encoding**

- ❖ Floating point zero (0⁺) exactly the same bits as integer zero
  - All bits = 0
- Can (Almost) Use Unsigned Integer Comparison
  - Must first compare sign bits
  - Must consider  $0^{-} = 0^{+} = 0$
  - NaNs problematic
    - Will be greater than any other values
    - What should comparison yield?
  - Otherwise OK
    - Denorm vs. normalized
    - Normalized vs. infinity