Floating Point I

CSE 351 Spring 2022

Instructor: Teaching Assistants:

Ruth Anderson
Melissa Birchfield
Kyrie Dowling
Diya Joy
Armin Magness
Jeffery Tian
Angela Xu

Jacob Christy
Ellis Haker
Anirudh Kumar
Hamsa Shankar
Assaf Vayner
Effie Zheng

Relevant Course Information

* hw4 due Friday (4/08) @ 11:59 pm
* hw5 due Monday (4/11) @ 11:59 pm
* Lab 1a due Monday (4/11) @ 11:59 pm
- Submit pointer.c and lab1Asynthesis.txt
- Make sure you submit something to Gradescope before the deadline and that the file names are correct
- Can use late day tokens to submit up until Wed 11:59 pm
* Lab 1b, due 4/18
- Submit aisle_manager.c, store_client.c, and lab1Bsynthesis.txt

Lab 1b Aside: C Macros

* C macros basics:
- Basic syntax is of the form: \#define NAME expression
- Allows you to use "NAME" instead of "expression" in code
- Does naïve copy and replace before compilation - everywhere the characters "NAME" appear in the code, the characters "expression" will now appear instead
- NOT the same as a Java constant
- Useful to help with readability/factoring in code
* You'll use C macros in Lab 1b for defining bit masks
- See Lab 1b starter code and Lecture 4 slides (card operations) for examples

Reading Review

* Terminology:
- normalized scientific binary notation
- trailing zeros
- sign, mantissa, exponent \leftrightarrow bit fields S, M, and E
- float, double
- biased notation (exponent), implicit leading one (mantissa)
- rounding errors

Review Questions

* Convert 11.375_{10} to normalized binary scientific notation
* What is the correct value encoded by the following floating point number?
Ob 0 | 10000000 | 11000000000000000000000
- bias $=2^{\mathrm{w}-1}-1$
- exponent = E-bias
- mantissa $=1 . \mathrm{M}$

Number Representation Revisited

* What can we represent in one word?
- Signed and Unsigned Integers
- Characters (ASCII)
- Addresses
* How do we encode the following:
- Real numbers (e.g., 3.14159)
- Very large numbers (e.g., 6.02×10^{23})
- Very small numbers (e.g., 6.626×10^{-34})
- Special numbers (e.g., ∞, NaN)

Floating Point Topics

* Fractional binary numbers
* IEEE floating-point standard
* Floating-point operations and rounding
* Floating-point in C
* There are many more details that we won't cover
- It's a 58-page standard...

Representation of Fractions

* "Binary Point," like decimal point, signifies boundary between integer and fractional parts:

Example 6-bit representation:

* Example: $10.1010_{2}=1 \times 2^{1}+1 \times 2^{-1}+1 \times 2^{-3}=2.625_{10}$

Representation of Fractions

* "Binary Point," like decimal point, signifies boundary between integer and fractional parts:

Example 6-bit representation:

* In this 6-bit representation:
- What is the encoding and value of the smallest (most negative) number?
- What is the encoding and value of the largest (most positive) number?
- What is the smallest number greater than 2 that we can represent?

Fractional Binary Numbers

* Representation
- Bits to right of "binary point" represent fractional powers of 2
- Represents rational number:

$$
\sum_{k=-j}^{i} b_{k} \cdot 2^{k}
$$

Fractional Binary Numbers

* Value
- 5 and 3/4 101.11_{2}
- 2 and $7 / 8$
- 47/64

Representation
10.111_{2}
0.101111_{2}

* Observations
- Shift left = multiply by power of 2
- Shift right = divide by power of 2
- Numbers of the form $0.111111 \ldots$... 2 are just below 1.0
- $1 / 2+1 / 4+1 / 8+\ldots+1 / 2^{i}+\ldots \rightarrow 1.0$
- Use notation $1.0-\varepsilon$

Limits of Representation

* Limitations:
- Even given an arbitrary number of bits, can only exactly represent numbers of the form $x^{*} 2^{y}$ (y can be negative)
- Other rational numbers have repeating bit representations

Value:

- $1 / 3=0.333333_{\ldots 10}=0.01010101[01]_{\ldots 2}$
- $1 / 5=0.001100110011[0011]_{\ldots 2}$
- $1 / 10=0.0001100110011[0011] \ldots 2$

Fixed Point Representation

* Implied binary point. Two example schemes:
\#1: the binary point is between bits 2 and 3
$b_{7} b_{6} b_{5} b_{4} b_{3}[.] b_{2} b_{1} b_{0}$
\#2: the binary point is between bits 4 and 5
$b_{7} b_{6} b_{5}[\cdot] b_{4} b_{3} b_{2} b_{1} b_{0}$
* Which scheme is best?

Floating Point Representation

* Analogous to scientific notation
- In Decimal:
- Not 12000000 , but $1.2 \times 10^{7} \quad$ In C: 1.2 e 7
- Not 0.0000012 , but $1.2 \times 10^{-6} \quad$ In C: $1.2 \mathrm{e}-6$
- In Binary:
- Not 11000.000 , but 1.1×2^{4}
- Not 0.000101, but 1.01×2^{-4}
* We have to divvy up the bits we have (e.g., 32) among:
- the sign (1 bit)
- the mantissa (significand)
- the exponent

Binary Scientific Notation (Review)

* Normalized form: exactly one digit (non-zero) to left of binary point
* Computer arithmetic that supports this called floating point due to the "floating" of the binary point
- Declare such variable in C as float (or doub7e)

IEEE Floating Point

* IEEE 754 (established in 1985)
- Standard to make numerically-sensitive programs portable
- Specifies two things: representation scheme and result of floating point operations
- Supported by all major CPUs
* Driven by numerical concerns
- Scientists/numerical analysts want them to be as real as possible
- Engineers want them to be easy to implement and fast
- Scientists mostly won out:
- Nice standards for rounding, overflow, underflow, but...
- Hard to make fast in hardware
- Float operations can be an order of magnitude slower than integer ops

Floating Point Encoding (Review)

* Use normalized, base 2 scientific notation:
- Value:
$\pm 1 \times$ Mantissa $\times 2^{\text {Exponent }}$
- Bit Fields:
$(-1)^{\mathrm{S}} \times 1 . \mathrm{M} \times 2^{(\mathrm{E}-\text { bias })}$
* Representation Scheme:
- Sign bit (0 is positive, 1 is negative)
- Mantissa (a.k.a. significand) is the fractional part of the number in normalized form and encoded in bit vector \mathbf{M}
- Exponent weights the value by a (possibly negative) power of 2 and encoded in the bit vector E

The Exponent Field (Review)

* Use biased notation
- Read exponent as unsigned, but with bias of $2^{w-1}-1=127$
- Representable exponents roughly $1 / 2$ positive and $1 / 2$ negative
- Exp $=\mathrm{E}-$ bias $\leftrightarrow \mathrm{E}=\mathrm{Exp}+$ bias
- Exponent $0(\operatorname{Exp}=0)$ is represented as $\mathrm{E}=0 \mathrm{~b} 01111111$
* Why biased?
- Makes floating point arithmetic easier
- Makes somewhat compatible with two's complement hardware

The Mantissa (Fraction) Field (Review)

1 bit 8 bits

23 bits

$$
(-1)^{S} \times(1 . M) \times 2^{(E-b i a s)}
$$

* Note the implicit 1 in front of the M bit vector
- Example: 0b 00111111110000000000000000000000 is read as $1.1_{2}=1.5_{10}$, not $0.1_{2}=0.5_{10}$
- Gives us an extra bit of precision
* Mantissa "limits"
- Low values near $\mathrm{M}=0 \mathrm{bO} 0 . .0$ are close to $2^{\text {Exp }}$
- High values near $M=0 b 1 \ldots 1$ are close to $2^{\text {Exp }}+1$

Normalized Floating Point Conversions

* FP \rightarrow Decimal

1. Append the bits of M to implicit leading 1 to form the mantissa.
2. Multiply the mantissa by $2^{\mathrm{E}-\text { bias. }}$
3. Multiply the sign $(-1)^{\text {S }}$.
4. Multiply out the exponent by shifting the binary point.
5. Convert from binary to decimal.

* Decimal \rightarrow FP

1. Convert decimal to binary.
2. Convert binary to normalized scientific notation.
3. Encode sign as $S(0 / 1)$.
4. Add the bias to exponent and encode E as unsigned.
5. The first bits after the leading 1 that fit are encoded into M.

Practice Question

* Convert the decimal number - $\mathbf{- 7 . 3 7 5}$ into floating point representation

Challenge Question

* Find the sum of the following binary numbers in normalized scientific binary notation:

$$
1.01_{2} \times 2^{0}+1.11_{2} \times 2^{2}
$$

Precision and Accuracy

* Precision is a count of the number of bits in a computer word used to represent a value
- Capacity for accuracy
* Accuracy is a measure of the difference between the actual value of a number and its computer representation
- High precision permits high accuracy but doesn't guarantee it. It is possible to have high precision but low accuracy.
- Example: float pi = 3.14;
- pi will be represented using all 24 bits of the mantissa (highly precise), but is only an approximation (not accurate)

Need Greater Precision?

* Double Precision (vs. Single Precision) in 64 bits

- C variable declared as double
- Exponent bias is now $2^{10}-1=1023$
- Advantages: greater precision (larger mantissa), greater range (larger exponent)
- Disadvantages: more bits used, slower to manipulate

Current Limitations

* Largest magnitude we can represent?
* Smallest magnitude we can represent?
- Limited range due to width of E field
* What happens if we try to represent $2^{0}+2^{-30}$?
- Rounding due to limited precision: stores 2^{0}
* There is a need for special cases
- How do we represent the value zero?
- What about ∞ and NaN ?

Summary

* Floating point approximates real numbers:

- Handles large numbers, small numbers, special numbers
- Exponent in biased notation (bias = $2^{\mathrm{w}-1}-1$)
- Size of exponent field determines our representable range
- Outside of representable exponents is overflow and underflow
- Mantissa approximates fractional portion of binary point
- Size of mantissa field determines our representable precision
- Implicit leading 1 (normalized) except in special cases
- Exceeding length causes rounding

