
CSE351, Spring 2022L06: Floating Point I

Floating Point I
CSE 351 Spring 2022
Instructor: Teaching Assistants:

Ruth Anderson Melissa Birchfield Jacob Christy Alena Dickmann

Kyrie Dowling Ellis Haker Maggie Jiang

Diya Joy Anirudh Kumar Jim Limprasert

Armin Magness Hamsa Shankar Dara Stotland

Jeffery Tian Assaf Vayner Tom Wu

Angela Xu Effie Zheng

http://xkcd.com/899/

http://xkcd.com/899/

CSE351, Spring 2022L06: Floating Point I

Relevant Course Information

 hw4 due Friday (4/08) @ 11:59 pm

 hw5 due Monday (4/11) @ 11:59 pm

 Lab 1a due Monday (4/11) @ 11:59 pm
 Submit pointer.c and lab1Asynthesis.txt

 Make sure you submit something to Gradescope before the
deadline and that the file names are correct

 Can use late day tokens to submit up until Wed 11:59 pm

 Lab 1b, due 4/18
 Submit aisle_manager.c, store_client.c, and
lab1Bsynthesis.txt

2

CSE351, Spring 2022L06: Floating Point I

Lab 1b Aside: C Macros

 C macros basics:

 Basic syntax is of the form: #define NAME expression

 Allows you to use “NAME” instead of “expression” in code
• Does naïve copy and replace before compilation – everywhere the

characters “NAME” appear in the code, the characters “expression”
will now appear instead

• NOT the same as a Java constant

 Useful to help with readability/factoring in code

 You’ll use C macros in Lab 1b for defining bit masks

 See Lab 1b starter code and Lecture 4 slides (card
operations) for examples

3

CSE351, Spring 2022L06: Floating Point I

Reading Review

 Terminology:

 normalized scientific binary notation

 trailing zeros

 sign, mantissa, exponent ↔ bit fields S, M, and E

 float, double

 biased notation (exponent), implicit leading one (mantissa)

 rounding errors

4

CSE351, Spring 2022L06: Floating Point I

Review Questions

 Convert 11.37510 to normalized binary scientific
notation

 What is the correct value encoded by the following
floating point number?

0b 0 | 1000 0000 | 110 0000 0000 0000 0000 0000

 bias = 2w-1-1

 exponent = E – bias

 mantissa = 1.M

5

CSE351, Spring 2022L06: Floating Point I

Number Representation Revisited

 What can we represent in one word?

 Signed and Unsigned Integers

 Characters (ASCII)

 Addresses

 How do we encode the following:

 Real numbers (e.g., 3.14159)

 Very large numbers (e.g., 6.02×1023)

 Very small numbers (e.g., 6.626×10-34)

 Special numbers (e.g., ∞, NaN)

6

Floating
Point

CSE351, Spring 2022L06: Floating Point I

Floating Point Topics

 Fractional binary numbers

 IEEE floating-point standard

 Floating-point operations and rounding

 Floating-point in C

 There are many more details that we won’t cover

 It’s a 58-page standard…
7

CSE351, Spring 2022L06: Floating Point I

Representation of Fractions

 “Binary Point,” like decimal point, signifies boundary
between integer and fractional parts:

Example 6-bit
representation:

 Example: 10.10102 = 1×21 + 1×2-1 + 1×2-3 = 2.62510

8

xx.yyyy

21
20 2-1

2-2 2-3 2-4

CSE351, Spring 2022L06: Floating Point I

Representation of Fractions

 “Binary Point,” like decimal point, signifies boundary
between integer and fractional parts:

Example 6-bit
representation:

 In this 6-bit representation:
 What is the encoding and value of

the smallest (most negative) number?

 What is the encoding and value of
the largest (most positive) number?

 What is the smallest number greater
than 2 that we can represent?

9

xx.yyyy

21
20 2-1

2-2 2-3 2-4

CSE351, Spring 2022L06: Floating Point I

• • •
b–1.

Fractional Binary Numbers

 Representation
 Bits to right of “binary point” represent fractional powers of 2

 Represents rational number:

bi bi–1 b2 b1 b0 b–2 b–3 b–j• • •• • •
1
2
4

2i–1

2i

• • •

1/2
1/4
1/8

2–j

bk 2
k

k j

i

10

CSE351, Spring 2022L06: Floating Point I

Fractional Binary Numbers

 Value Representation

 5 and 3/4

 2 and 7/8

 47/64

 Observations

 Shift left = multiply by power of 2

 Shift right = divide by power of 2

 Numbers of the form 0.111111…2 are just below 1.0

 1/2 + 1/4 + 1/8 + … + 1/2i + … ➙ 1.0

 Use notation 1.0 – ε

101.112

10.1112

0.1011112

11

CSE351, Spring 2022L06: Floating Point I

Limits of Representation

 Limitations:

 Even given an arbitrary number of bits, can only exactly
represent numbers of the form x * 2y (y can be negative)

 Other rational numbers have repeating bit representations

Value: Binary Representation:
• 1/3 = 0.333333…10 = 0.01010101[01]…2

• 1/5 = 0.001100110011[0011]…2

• 1/10 = 0.0001100110011[0011]…2

12

CSE351, Spring 2022L06: Floating Point I

Fixed Point Representation

 Implied binary point. Two example schemes:

#1: the binary point is between bits 2 and 3
b7 b6 b5 b4 b3 [.] b2 b1 b0

#2: the binary point is between bits 4 and 5
b7 b6 b5 [.] b4 b3 b2 b1 b0

 Which scheme is best?

13

CSE351, Spring 2022L06: Floating Point I

Floating Point Representation

 Analogous to scientific notation

 In Decimal:
• Not 12000000, but 1.2 x 107 In C: 1.2e7

• Not 0.0000012, but 1.2 x 10-6 In C: 1.2e-6

 In Binary:
• Not 11000.000, but 1.1 x 24

• Not 0.000101, but 1.01 x 2-4

 We have to divvy up the bits we have (e.g., 32) among:

 the sign (1 bit)

 the mantissa (significand)

 the exponent

14

CSE351, Spring 2022L06: Floating Point I

Binary Scientific Notation (Review)

 Normalized form: exactly one digit (non-zero) to left
of binary point

 Computer arithmetic that supports this called floating
point due to the “floating” of the binary point

 Declare such variable in C as float (or double)

15

1.012 × 2-1

radix (base)binary point

exponentmantissa

CSE351, Spring 2022L06: Floating Point I

IEEE Floating Point

 IEEE 754 (established in 1985)

 Standard to make numerically-sensitive programs portable

 Specifies two things: representation scheme and result of floating
point operations

 Supported by all major CPUs

 Driven by numerical concerns

 Scientists/numerical analysts want them to be as real as possible

 Engineers want them to be easy to implement and fast

 Scientists mostly won out:
• Nice standards for rounding, overflow, underflow, but...

• Hard to make fast in hardware

• Float operations can be an order of magnitude slower than integer ops

16

CSE351, Spring 2022L06: Floating Point I

Floating Point Encoding (Review)

 Use normalized, base 2 scientific notation:

 Value: ±1 × Mantissa × 2Exponent

 Bit Fields: (-1)S × 1.M × 2(E–bias)

 Representation Scheme:

 Sign bit (0 is positive, 1 is negative)

 Mantissa (a.k.a. significand) is the fractional part of the
number in normalized form and encoded in bit vector M

 Exponent weights the value by a (possibly negative) power
of 2 and encoded in the bit vector E

17

S E M
31 30 23 22 0

1 bit 8 bits 23 bits

CSE351, Spring 2022L06: Floating Point I

The Exponent Field (Review)

 Use biased notation

 Read exponent as unsigned, but with bias of 2w-1-1 = 127

 Representable exponents roughly ½ positive and ½ negative

 Exp = E – bias ↔ E = Exp + bias
• Exponent 0 (Exp = 0) is represented as E = 0b 0111 1111

 Why biased?

 Makes floating point arithmetic easier

 Makes somewhat compatible with two’s complement
hardware 18

CSE351, Spring 2022L06: Floating Point I

The Mantissa (Fraction) Field (Review)

 Note the implicit 1 in front of the M bit vector

 Example: 0b 0011 1111 1100 0000 0000 0000 0000 0000
is read as 1.12 = 1.510, not 0.12 = 0.510

 Gives us an extra bit of precision

 Mantissa “limits”

 Low values near M = 0b0…0 are close to 2Exp

 High values near M = 0b1…1 are close to 2Exp+1

19

(-1)S x (1 . M) x 2(E–bias)

S E M
31 30 23 22 0

1 bit 8 bits 23 bits

CSE351, Spring 2022L06: Floating Point I

Normalized Floating Point Conversions

 FP → Decimal

1. Append the bits of M to
implicit leading 1 to form
the mantissa.

2. Multiply the mantissa by
2E – bias.

3. Multiply the sign (-1)S.

4. Multiply out the
exponent by shifting the
binary point.

5. Convert from binary to
decimal.

20

 Decimal → FP

1. Convert decimal to
binary.

2. Convert binary to
normalized scientific
notation.

3. Encode sign as S (0/1).

4. Add the bias to exponent
and encode E as
unsigned.

5. The first bits after the
leading 1 that fit are
encoded into M.

CSE351, Spring 2022L06: Floating Point I

Practice Question

 Convert the decimal number -7.375 into floating point
representation

Challenge Question
 Find the sum of the following binary numbers in

normalized scientific binary notation:

1.012×20 + 1.112×22

21

CSE351, Spring 2022L06: Floating Point I

Precision and Accuracy

 Precision is a count of the number of bits in a
computer word used to represent a value

 Capacity for accuracy

 Accuracy is a measure of the difference between the
actual value of a number and its computer
representation

 High precision permits high accuracy but doesn’t guarantee
it. It is possible to have high precision but low accuracy.

 Example: float pi = 3.14;

• pi will be represented using all 24 bits of the mantissa (highly
precise), but is only an approximation (not accurate)

22

CSE351, Spring 2022L06: Floating Point I

Need Greater Precision?

 Double Precision (vs. Single Precision) in 64 bits

 C variable declared as double

 Exponent bias is now 210–1 = 1023

 Advantages: greater precision (larger mantissa),
greater range (larger exponent)

 Disadvantages: more bits used,
slower to manipulate

23

S E (11) M (20 of 52)
63 62 52 51 32

M (32 of 52)
31 0

CSE351, Spring 2022L06: Floating Point I

Current Limitations

 Largest magnitude we can represent?

 Smallest magnitude we can represent?

 Limited range due to width of E field

 What happens if we try to represent 20 + 2-30?

 Rounding due to limited precision: stores 20

 There is a need for special cases

 How do we represent the value zero?

 What about ∞ and NaN?

24

CSE351, Spring 2022L06: Floating Point I

Summary

 Floating point approximates real numbers:

 Handles large numbers, small numbers, special numbers

 Exponent in biased notation (bias = 2w-1–1)
• Size of exponent field determines our representable range

• Outside of representable exponents is overflow and underflow

 Mantissa approximates fractional portion of binary point
• Size of mantissa field determines our representable precision

• Implicit leading 1 (normalized) except in special cases

• Exceeding length causes rounding

25

S E (8) M (23)
31 30 23 22 0

