Relevant Course Information

❖ hw3 due Wednesday (4/06) @ 11:59 pm
❖ hw4 due Friday (4/08) @ 11:59 pm
❖ Lab 1a due Monday (4/11)
 ▪ Use ptest and dlc.py to check your solution for correctness (on the CSE Linux environment)
 ▪ Submit `pointer.c` and `lab1Asynthesis.txt` to Gradescope
 • Make sure you pass the File and Compilation Check – all the correct files were found and there were no compilation or runtime errors
❖ Lab 1b coming soon, due 4/18
 ▪ Bit manipulation on a custom number representation
 ▪ Bonus slides at the end of today’s lecture have relevant examples
Runnable Code Snippets on Ed

- Ed allows you to embed runnable code snippets (e.g., readings, homework, discussion)
 - These are *editable* and *rerunnable*!
 - Hide compiler warnings, but will show compiler errors and runtime errors

- Suggested use
 - Good for experimental questions about basic behaviors in C
 - *NOT* entirely consistent with the CSE Linux environment, so should not be used for any lab-related work
Reading Review

- Terminology:
 - UMin, UMax, TMin, Tmax
 - Type casting: implicit vs. explicit
 - Integer extension: zero extension vs. sign extension
 - Modular arithmetic and arithmetic overflow
 - Bit shifting: left shift, logical right shift, arithmetic right shift
Review Questions

- What is the value (and encoding) of T_{Min} for a fictional 6-bit wide integer data type?

- For unsigned char $uc = 0xA1$;, what are the produced data for the cast (unsigned short)uc?

- What is the result of the following expressions?
 - $(\text{signed char})uc \gg 2$
 - $(\text{unsigned char})uc \gg 3$
Why Does Two’s Complement Work?

For all representable positive integers x, we want:

\[
\text{bit representation of } x + \text{bit representation of } -x = 0 \quad \text{(ignoring the carry-out bit)}
\]

What are the 8-bit negative encodings for the following?

\[
\begin{align*}
00000001 & + ???????? & = 00000000 \\
00000001 & + ???????? & = 00000000 \\
11000011 & + ???????? & = 00000000
\end{align*}
\]
Why Does Two’s Complement Work?

- For all representable positive integers x, we want:

$$\begin{align*}
\text{bit representation of } x \\
+ \text{bit representation of } -x \\
\underline{0} \quad \text{(ignoring the carry-out bit)}
\end{align*}$$

- What are the 8-bit negative encodings for the following?

$$\begin{align*}
00000001 + 11111111 &= 100000000 \\
00000010 + 11111110 &= 100000000 \\
11000011 + 00111101 &= 100000000
\end{align*}$$

These are the bitwise complement plus 1!

$$-x == \sim x + 1$$
Integers

- **Binary representation of integers**
 - Unsigned and signed
 - Casting in C

- **Consequences of finite width representations**
 - Sign extension, overflow

- **Shifting and arithmetic operations**
Signed/Unsigned Conversion Visualized

- Two’s Complement → Unsigned
 - Ordering Inversion
 - Negative → Big Positive

2’s Complement Range

Unsigned Range

0/UMin

TMin

TMax

UMax

UMax – 1

TMax + 1

TMax

0
Values To Remember (Review)

- **Unsigned Values**
 - **UMin** = \(0b00...0\) = 0
 - **UMax** = \(0b11...1\) = \(2^w - 1\)

- **Two’s Complement Values**
 - **TMin** = \(0b10...0\) = \(-2^{w-1}\)
 - **TMax** = \(0b01...1\) = \(2^{w-1} - 1\)
 - **-1** = \(0b11...1\)

- **Example:** Values for \(w = 64\)

<table>
<thead>
<tr>
<th></th>
<th>Decimal</th>
<th>Hex</th>
</tr>
</thead>
<tbody>
<tr>
<td>UMax</td>
<td>18,446,744,073,709,551,615</td>
<td>FF FF FF FF FF FF FF FF FF</td>
</tr>
<tr>
<td>Tmax</td>
<td>9,223,372,036,854,775,807</td>
<td>7F FF FF FF FF FF FF FF FF</td>
</tr>
<tr>
<td>Tmin</td>
<td>-9,223,372,036,854,775,808</td>
<td>80 00 00 00 00 00 00 00 00</td>
</tr>
<tr>
<td>-1</td>
<td>-1</td>
<td>FF FF FF FF FF FF FF FF FF</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>00 00 00 00 00 00 00 00 00</td>
</tr>
</tbody>
</table>
In C: Signed vs. Unsigned (Review)

- Casting
 - Bits are unchanged, just interpreted differently!
 - \texttt{int} tx, ty;
 - \texttt{unsigned int} ux, uy;
 - \textit{Explicit} casting
 - tx = (\texttt{int}) ux;
 - uy = (\texttt{unsigned int}) ty;
 - \textit{Implicit} casting can occur during assignments or function calls
 - tx = ux;
 - uy = ty;
Casting Surprises (Review)

- Integer literals (constants)
 - By default, integer constants are considered *signed* integers
 - Hex constants already have an explicit binary representation
 - Use “U” (or “u”) suffix to explicitly force *unsigned*
 - Examples: 0U, 4294967259u

- Expression Evaluation
 - When you mixed unsigned and signed in a single expression, then *signed values are implicitly cast to unsigned*
 - Including comparison operators <, >, ==, <=, >=
Practice Question 1

- Assuming 8-bit data (i.e., bit position 7 is the MSB), what will the following expression evaluate to?
 - $\text{UMin} = 0$, $\text{UMax} = 255$, $\text{TMin} = -128$, $\text{TMax} = 127$

- $127 < (\text{signed char}) \ 128u$
Integers

- Binary representation of integers
 - Unsigned and signed
 - Casting in C

- Consequences of finite width representations
 - Sign extension, overflow

- Shifting and arithmetic operations
Sign Extension (Review)

- **Task:** Given a \(w \)-bit signed integer \(X \), convert it to \(w+k \)-bit signed integer \(X' \) *with the same value*

- **Rule:** Add \(k \) copies of sign bit
 - Let \(x_i \) be the \(i \)-th digit of \(X \) in binary
 - \(X' = x_{w-1}, \ldots, x_{w-1}, x_{w-1}, x_{w-2}, \ldots, x_1, x_0 \)

\[
\begin{array}{c}
\text{k copies of MSB} \\
\text{original X}
\end{array}
\]
Two’s Complement Arithmetic

- The same addition procedure works for both unsigned and two’s complement integers
 - **Simplifies hardware:** only one algorithm for addition
 - **Algorithm:** simple addition, discard the highest carry bit
 - Called modular addition: result is sum \(\text{modulo } 2^w \)
Arithmetic Overflow (Review)

- When a calculation produces a result that can’t be represented in the current encoding scheme
 - Integer range limited by fixed width
 - Can occur in both the positive and negative directions

- C and Java ignore overflow exceptions
 - You end up with a bad value in your program and no warning/indication... oops!

<table>
<thead>
<tr>
<th>Bits</th>
<th>Unsigned</th>
<th>Signed</th>
</tr>
</thead>
<tbody>
<tr>
<td>0000</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0001</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>0010</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>0011</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>0100</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>0101</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>0110</td>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>0111</td>
<td>7</td>
<td>7</td>
</tr>
<tr>
<td>1000</td>
<td>8</td>
<td>-8</td>
</tr>
<tr>
<td>1001</td>
<td>9</td>
<td>-7</td>
</tr>
<tr>
<td>1010</td>
<td>10</td>
<td>-6</td>
</tr>
<tr>
<td>1011</td>
<td>11</td>
<td>-5</td>
</tr>
<tr>
<td>1100</td>
<td>12</td>
<td>-4</td>
</tr>
<tr>
<td>1101</td>
<td>13</td>
<td>-3</td>
</tr>
<tr>
<td>1110</td>
<td>14</td>
<td>-2</td>
</tr>
<tr>
<td>1111</td>
<td>15</td>
<td>-1</td>
</tr>
</tbody>
</table>
Overflow: Unsigned

-**Addition:** drop carry bit (-2^N)

\[
\begin{array}{c}
15 \\
+ 2 \\
\hline
17 \\
\end{array}
+ \begin{array}{c}
1111 \\
+ 0010 \\
\hline
10001 \\
\end{array}
\]

-**Subtraction:** borrow ($+2^N$)

\[
\begin{array}{c}
1 \\
- 2 \\
\hline
-1 \\
\end{array}
\begin{array}{c}
10001 \\
- 0010 \\
\hline
1111 \\
\end{array}
\]

$\pm 2^N$ because of modular arithmetic
Overflow: Two’s Complement

- **Addition:** \((+)+(+)=(-)\) result?

\[
\begin{array}{c}
6 \\
+ 3 \\
\hline
9
\end{array}
\quad
\begin{array}{c}
0110 \\
+ 0011 \\
\hline
1001
\end{array}

-7

- **Subtraction:** \((-)+(-)=(+)\)?

\[
\begin{array}{c}
-7 \\
- 3 \\
\hline
-10
\end{array}
\quad
\begin{array}{c}
1001 \\
- 0011 \\
\hline
0110
\end{array}

6

For signed: overflow if operands have same sign and result’s sign is different
Practice Questions 2

- Assuming 8-bit integers:
 - 0x27 = 39 (signed) = 39 (unsigned)
 - 0xD9 = -39 (signed) = 217 (unsigned)
 - 0x7F = 127 (signed) = 127 (unsigned)
 - 0x81 = -127 (signed) = 129 (unsigned)

- For the following additions, did signed and/or unsigned overflow occur?
 - 0x27 + 0x81
 - 0x7F + 0xD9
Integers

- Binary representation of integers
 - Unsigned and signed
 - Casting in C

- Consequences of finite width representations
 - Sign extension, overflow

- Shifting and arithmetic operations
Shift Operations (Review)

- Throw away (drop) extra bits that “fall off” the end
- Left shift (\(x<<n\)) bit vector \(x\) by \(n\) positions
 - Fill with 0’s on right
- Right shift (\(x>>n\)) bit-vector \(x\) by \(n\) positions
 - Logical shift (for unsigned values)
 - Fill with 0’s on left
 - Arithmetic shift (for signed values)
 - Replicate most significant bit on left (maintains sign of \(x\))

<table>
<thead>
<tr>
<th>(x)</th>
<th>0010 0010</th>
</tr>
</thead>
<tbody>
<tr>
<td>(x<<3)</td>
<td>0001 0000</td>
</tr>
<tr>
<td>logical:</td>
<td></td>
</tr>
<tr>
<td>(x>>2)</td>
<td>0000 1000</td>
</tr>
<tr>
<td>arithmetic:</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>(x)</th>
<th>1010 0010</th>
</tr>
</thead>
<tbody>
<tr>
<td>(x<<3)</td>
<td>0001 0000</td>
</tr>
<tr>
<td>logical:</td>
<td></td>
</tr>
<tr>
<td>(x>>2)</td>
<td>0010 1000</td>
</tr>
<tr>
<td>arithmetic:</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>(x)</th>
<th>1110 1000</th>
</tr>
</thead>
<tbody>
<tr>
<td>(x>>2)</td>
<td>1110 1000</td>
</tr>
<tr>
<td>arithmetic:</td>
<td></td>
</tr>
</tbody>
</table>
Shift Operations (Review)

- **Arithmetic:**
 - Left shift \((x<<n)\) is equivalent to multiplying by \(2^n\)
 - Right shift \((x>>n)\) is equivalent to dividing by \(2^n\)
 - Shifting is faster than general multiply and divide operations!

- **Notes:**
 - Shifts by \(n<0\) or \(n\geq w\) (\(w\) is bit width of \(x\)) are *undefined*
 - **In C:** behavior of \(>>\) is determined by the compiler
 - In gcc / C lang, depends on data type of \(x\) (signed/unsigned)
 - **In Java:** logical shift is \(>>>\) and arithmetic shift is \(>>\)
Left Shifting Arithmetic 8-bit Example

- No difference in left shift operation for unsigned and signed numbers (just manipulates bits)
 - Difference comes during interpretation: $x \times 2^n$?

<table>
<thead>
<tr>
<th>x</th>
<th>Signed</th>
<th>Unsigned</th>
</tr>
</thead>
<tbody>
<tr>
<td>25</td>
<td>25</td>
<td>25</td>
</tr>
<tr>
<td>L1 = $x << 2$;</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>L2 = $x << 3$;</td>
<td>-56</td>
<td>200</td>
</tr>
<tr>
<td>L3 = $x << 4$;</td>
<td>-112</td>
<td>144</td>
</tr>
</tbody>
</table>

Signed overflow

Unsigned overflow
Right Shifting Arithmetic 8-bit Examples

▶ **Reminder:** C operator \gg does *logical* shift on unsigned values and *arithmetic* shift on signed values
 - Logical Shift: $x/2^n$?

$xu = 240u; \quad 11110000 \quad = \quad 240$

$R1u=xu\gg 3; \quad 00011110000 \quad = \quad 30$

$R2u=xu\gg 5; \quad 0000011110000 \quad = \quad 7$

rounding (down)
Right Shifting Arithmetic 8-bit Examples

- Reminder: C operator `>>` does \textit{logical} shift on \textit{unsigned} values and \textit{arithmetic} shift on \textit{signed} values

 - Arithmetic Shift: `x / 2^n`?

```
x_s = -16; 11110000 = -16
R1_s = x_u >> 3; 111111100000 = -2
R2_s = x_u >> 5; 11111111100000 = -1
```

(rounding (down))
Exploration Questions

For the following expressions, find a value of `signed char x`, if there exists one, that makes the expression True.

- Assume we are using 8-bit arithmetic:
 - `x == (unsigned char) x`
 - `x >= 128U`
 - `x != (x>>2)<<2`
 - `x == -x`
 - Hint: there are two solutions
 - `(x < 128U) && (x > 0x3F')`
Summary

- Sign and unsigned variables in C
 - Bit pattern remains the same, just interpreted differently
 - Strange things can happen with our arithmetic when we convert/cast between sign and unsigned numbers
 - Type of variables affects behavior of operators (shifting, comparison)

- We can only represent so many numbers in \(w \) bits
 - When we exceed the limits, arithmetic overflow occurs
 - Sign extension tries to preserve value when expanding

- Shifting is a useful bitwise operator
 - Right shifting can be arithmetic (sign) or logical (0)
 - Can be used in multiplication with constant or bit masking
Some examples of using shift operators in combination with bitmasks, which you may find helpful for Lab 1b.

- Extract the 2nd most significant byte of an \texttt{int}
- Extract the sign bit of a signed \texttt{int}
- Conditionals as Boolean expressions
Using Shifts and Masks

- Extract the 2nd most significant byte of an int:
 - First shift, then mask: \((x >> 16) & 0xFF\)

\[
\begin{array}{|c|c|}
\hline
x & 00000001 00000010 00000011 00000100 \\
\hline
x >> 16 & 00000000 00000000 00000001 00000010 \\
\hline
0xFF & 00000000 00000000 00000000 11111111 \\
\hline
(x >> 16) & 0xFF & 00000000 00000000 00000000 00000010 \\
\hline
\end{array}
\]

- Or first mask, then shift: \((x \& 0xFFF0000) >> 16\)

\[
\begin{array}{|c|c|}
\hline
x & 00000001 00000010 00000011 00000100 \\
\hline
0xFFF0000 & 00000000 11111111 00000000 00000000 \\
\hline
x \& 0xFFF0000 & 00000000 00000010 00000000 00000000 \\
\hline
(x \& 0xFFF0000) >> 16 & 00000000 00000000 00000000 00000010 \\
\hline
\end{array}
\]
Using Shifts and Masks

- Extract the **sign bit** of a signed `int`:
 - First shift, then mask: `(x >> 31) & 0x1`
 - Assuming arithmetic shift here, but this works in either case
 - Need mask to clear 1s possibly shifted in

<table>
<thead>
<tr>
<th></th>
<th>00000001 00000010 00000011 00000100</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>x</code></td>
<td></td>
</tr>
<tr>
<td><code>x>>31</code></td>
<td>00000000 00000000 00000000 00000000</td>
</tr>
<tr>
<td>0x1</td>
<td>00000000 00000000 00000000 00000001</td>
</tr>
<tr>
<td><code>(x>>31) & 0x1</code></td>
<td>00000000 00000000 00000000 00000000</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>00000001 00000010 00000011 00000100</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>x</code></td>
<td></td>
</tr>
<tr>
<td><code>x>>31</code></td>
<td>11111111 11111111 11111111 11111111</td>
</tr>
<tr>
<td>0x1</td>
<td>00000000 00000000 00000000 00000001</td>
</tr>
<tr>
<td><code>(x>>31) & 0x1</code></td>
<td>00000000 00000000 00000000 00000001</td>
</tr>
</tbody>
</table>
Using Shifts and Masks

- Conditionals as Boolean expressions
 - For `int x`, what does `(x<<31)>>31` do?

<table>
<thead>
<tr>
<th></th>
<th>00000000 00000000 00000000 00000001</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>x=!!123</code></td>
<td>10000000 00000000 00000000 00000000</td>
</tr>
<tr>
<td><code>x<<31</code></td>
<td>11111111 11111111 11111111 11111111</td>
</tr>
<tr>
<td><code>(x<<31)>>31</code></td>
<td>00000000 00000000 00000000 00000000</td>
</tr>
<tr>
<td><code>!x</code></td>
<td>00000000 00000000 00000000 00000000</td>
</tr>
<tr>
<td><code>!x<<31</code></td>
<td>00000000 00000000 00000000 00000000</td>
</tr>
<tr>
<td><code>(!!x<<31)>>31</code></td>
<td>00000000 00000000 00000000 00000000</td>
</tr>
</tbody>
</table>

- Can use in place of conditional:
 - In C: `if(x) {a=y;} else {a=z;}` equivalent to `a=x?y:z;`
 - `a=((!!x<<31)>>31)&y) | (((!x<<31)>>31)&z);`