Integers II
CSE 351 Spring 2022

Instructor: Ruth Anderson

Teaching Assistants:
Melissa Birchfield Jacob Christy Alena Dickmann
Kyrie Dowling Ellis Haker Maggie Jiang
Diya Joy Anirudh Kumar Jim Limprasert
Armin Magness Hamsa Shankar Dara Stotland
Jeffery Tian Assaf Vayner Tom Wu
Angela Xu Effie Zheng

http://xkcd.com/571/
Relevant Course Information

- hw3 due Wednesday (4/06) @ 11:59 pm
- hw4 due Friday (4/08) @ 11:59 pm
- Lab 1a due Monday (4/11)
 - Use ptest and dl c.py to check your solution for correctness (on the CSE Linux environment)
 - Submit `pointer.c` and `lab1Asynthesis.txt` to Gradescope
 - Make sure you pass the File and Compilation Check – all the correct files were found and there were no compilation or runtime errors
- Lab 1b coming soon, due 4/18
 - Bit manipulation on a custom number representation
 - [Bonus slides at the end of today’s lecture have relevant examples]
Runnable Code Snippets on Ed

- Ed allows you to embed runnable code snippets (e.g., readings, homework, discussion)
 - These are *editable* and *rerunnable*!
 - Hide compiler warnings, but will show compiler errors and runtime errors

- Suggested use
 - Good for experimental questions about basic behaviors in C
 - *NOT* entirely consistent with the CSE Linux environment, so should not be used for any lab-related work
Reading Review

- **Terminology:**
 - $\text{UMin}, \text{UMax}, \text{TMin}, \text{TMax}$
 - Type casting: implicit vs. explicit
 - Integer extension: zero extension vs. sign extension
 - Modular arithmetic and arithmetic overflow
 - Bit shifting: left shift, logical right shift, arithmetic right shift
Review Questions

▶ What is the value (and encoding) of T_{Min} for a fictional 6-bit wide integer data type?

\[2^6 = 64 \text{ patterns} \]

\[\begin{array}{cccccccc}
0 & 0 & 0 & 0 & 0 & 0 \\
-2^5 & -2^4 & -2^3 & -2^2 & -2^1 & -2^0 \\
\end{array} \]

\[1010 \ 0001 \]

▶ For unsigned char $uc = 0xA1$; what are the produced data for the cast (unsigned short)uc?

unsigned \rightarrow zero extension $\quad 0x\ 0\ 0\ A1$

▶ What is the result of the following expressions?

▪ (signed char)uc \gg 2

\[\text{signed: } 0b1010\ 0001 \xrightarrow{\text{arithmetic}} 0b1110\ 1000 = 0xE8 \]

\[\text{unsigned: } 0b1010\ 0001 \xrightarrow{\text{logical}} 0b0001\ 0100 = 0x\ 14 \]
Why Does Two’s Complement Work?

- For all representable positive integers x, we want:

$$\text{additive inverse} \left\{ \begin{align*}
\text{bit representation of } x \\
+ \text{bit representation of } -x
\end{align*} \right\} 0 \quad \text{(ignoring the carry-out bit)}$$

- What are the 8-bit negative encodings for the following?

\[
\begin{array}{cccc}
00000001 & + & ????????? & + & 11000011 \\
00000000 & + & ????????? & + & 00000000
\end{array}
\]
Why Does Two’s Complement Work?

- For all representable positive integers x, we want:

 \[
 \text{bit representation of } x + \text{bit representation of } -x = 0 \quad \text{(ignoring the carry-out bit)}
 \]

- What are the 8-bit negative encodings for the following?

 \[
 \begin{array}{ccc}
 00000001 & + & 11111111 \\
 100000000 & + & 100000000 \\
 110000011 & + & 00111101 \\
 \end{array}
 \]

These are the bitwise complement plus 1!

\[-x = \sim x + 1\]
Integers

- **Binary representation of integers**
 - Unsigned and signed
 - Casting in C

- **Consequences of finite width representations**
 - Sign extension, overflow

- **Shifting and arithmetic operations**
Signed/Unsigned Conversion Visualized

- Two’s Complement → Unsigned
 - Ordering Inversion
 - Negative → Big Positive

\[2^{w-1} - 1 = \overline{\text{Unsigned Range}} \]

\[-2^{w-1} = \overline{\text{Signed Range}} \]
Values To Remember (Review)

- **Unsigned Values**
 - UMin = 0b00...0 = 0
 - UMax = 0b11...1 = $2^w - 1$

- **Two’s Complement Values**
 - Tmin = 0b10...0 = -2^{w-1}
 - Tmax = 0b01...1 = $2^{w-1} - 1$
 - -1 = 0b11...1

- **Example:** Values for $w = 64$

<table>
<thead>
<tr>
<th></th>
<th>Decimal</th>
<th>Hex</th>
</tr>
</thead>
<tbody>
<tr>
<td>UMax</td>
<td>18,446,744,073,709,551,615</td>
<td>FF FF FF FF FF FF FF FF FF</td>
</tr>
<tr>
<td>Tmax</td>
<td>9,223,372,036,854,775,807</td>
<td>7F FF FF FF FF FF FF FF FF</td>
</tr>
<tr>
<td>Tmin</td>
<td>-9,223,372,036,854,775,808</td>
<td>80 00 00 00 00 00 00 00 00 00</td>
</tr>
<tr>
<td>-1</td>
<td>-1</td>
<td>FF FF FF FF FF FF FF FF FF</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>00 00 00 00 00 00 00 00 00 00</td>
</tr>
</tbody>
</table>
In C: Signed vs. Unsigned (Review)

- **Casting**
 - **Bits are unchanged, just interpreted differently!**
 - `int tx, ty;
 - `unsigned int ux, uy;
 - **Explicit casting**
 - `tx = (int) ux;
 - `uy = (unsigned int) ty;
 - **Implicit casting** can occur during assignments or function calls
 - cast to target variable/parameter type
 - `tx = ux;
 - `uy = ty;
 - (also implicitly occurs with printf format specifiers)
Casting Surprises (Review)

- **Integer literals (constants)**
 - By default, integer constants are considered *signed* integers
 - Hex constants already have an explicit binary representation
 - Use “U” (or “u”) suffix to explicitly force *unsigned*
 - Examples: `0U`, `4294967259u`

- **Expression Evaluation**
 - When you mixed unsigned and signed in a single expression, then *signed values are implicitly cast to unsigned* ("dominates")
 - Including comparison operators `<`, `>`, `==`, `<=`, `>=`
Practice Question 1

- Assuming 8-bit data (i.e., bit position 7 is the MSB), what will the following expression evaluate to?
 - UMin = 0, UMax = 255, Tmin = -128, Tmax = 127

- $127 < (\text{signed char}) 128u$

 \[
 \begin{array}{c}
 \text{signed comparison:} \\
 \quad 127 < -128 \quad \boxed{\text{False}}
 \end{array}
 \]

 \[
 \begin{array}{c}
 \text{unsigned comparison:} \\
 \quad 127 < 128 \quad \boxed{\text{True}}
 \end{array}
 \]
Integers

- Binary representation of integers
 - Unsigned and signed
 - Casting in C

- Consequences of finite width representations
 - Sign extension, overflow

- Shifting and arithmetic operations
Sign Extension (Review)

- **Task:** Given a \(w \)-bit signed integer \(X \), convert it to a \(w+k \)-bit signed integer \(X' \) *with the same value*

- **Rule:** Add \(k \) copies of sign bit
 - Let \(x_i \) be the \(i \)-th digit of \(X \) in binary
 - \(X' = x_{w-1}, \ldots, x_{w-1}, x_{w-1}, x_{w-2}, \ldots, x_1, x_0 \)
Two’s Complement Arithmetic

- The same addition procedure works for both unsigned and two’s complement integers
 - **Simplifies hardware:** only one algorithm for addition
 - **Algorithm:** simple addition, discard the highest carry bit
 - Called modular addition: result is sum $\mod 2^w$
Arithmetic Overflow (Review)

- When a calculation produces a result that can’t be represented in the current encoding scheme
 - Integer range limited by fixed width
 - Can occur in both the positive and negative directions

C and Java ignore overflow exceptions
- You end up with a bad value in your program and no warning/indication... oops!

<table>
<thead>
<tr>
<th>Bits</th>
<th>Unsigned</th>
<th>Signed</th>
</tr>
</thead>
<tbody>
<tr>
<td>0000</td>
<td>0\textsuperscript{U\textsubscript{min}}</td>
<td>0</td>
</tr>
<tr>
<td>0001</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>0010</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>0011</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>0100</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>0101</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>0110</td>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>0111</td>
<td>7</td>
<td>7</td>
</tr>
<tr>
<td>1000</td>
<td>8</td>
<td>-8</td>
</tr>
<tr>
<td>1001</td>
<td>9</td>
<td>-7</td>
</tr>
<tr>
<td>1010</td>
<td>10</td>
<td>-6</td>
</tr>
<tr>
<td>1011</td>
<td>11</td>
<td>-5</td>
</tr>
<tr>
<td>1100</td>
<td>12</td>
<td>-4</td>
</tr>
<tr>
<td>1101</td>
<td>13</td>
<td>-3</td>
</tr>
<tr>
<td>1110</td>
<td>14</td>
<td>-2</td>
</tr>
<tr>
<td>1111</td>
<td>15</td>
<td>-1</td>
</tr>
</tbody>
</table>
Overflow: Unsigned

- **Addition**: drop carry bit (-2^N)

 \[
 \begin{array}{c}
 15 \\
 + 2
 \end{array}
 \begin{array}{c}
 0010 \\
 \hline
 10001
 \end{array}
 \]

- **Subtraction**: borrow ($+2^N$)

 \[
 \begin{array}{c}
 1 \\
 - 2
 \end{array}
 \begin{array}{c}
 0010 \\
 \hline
 1111
 \end{array}
 \]

$\pm 2^N$ because of modular arithmetic
Overflow: Two’s Complement

▶ Addition: $(+) + (+) = (-)$ result?

\[
\begin{array}{c}
6 \\
+3 \\
\hline
9
\end{array}
\quad \begin{array}{c}
0110 \\
+0011 \\
\hline
1001
\end{array}
\quad -7
\]

▶ Subtraction: $(-) + (-) = (+)$?

\[
\begin{array}{c}
-7 \\
-3 \\
\hline
-10
\end{array}
\quad \begin{array}{c}
1001 \\
-0011 \\
\hline
0110
\end{array}
\quad 6
\]

For signed: overflow if operands have same sign and result’s sign is different
Practice Questions 2

- Assuming 8-bit integers:
 - \(0x27 = 39\) (signed) = 39 (unsigned)
 - \(0xD9 = -39\) (signed) = 217 (unsigned)
 - \(0x7F = 127\) (signed) = 127 (unsigned)
 - \(0x81 = -127\) (signed) = 129 (unsigned)

- For the following additions, did signed and/or unsigned overflow occur?
 - \(0x27 + 0x81\)
 - Signed: \(39 + (-127) = -88\) no signed overflow
 - Unsigned: \(39 + 129 = 168\) no unsigned overflow
 - \(0x7F + 0xD9\)
 - Signed: \(127 + (-39) = 88\) no signed overflow
 - Unsigned: \(127 + 217 = 344\) unsigned overflow
Integers

- Binary representation of integers
 - Unsigned and signed
 - Casting in C
- Consequences of finite width representations
 - Sign extension, overflow
- Shifting and arithmetic operations
Shift Operations (Review)

- Throw away (drop) extra bits that “fall off” the end
- Left shift \(x<<n \) bit vector \(x \) by \(n \) positions
 - Fill with 0’s on right
- Right shift \(x>>n \) bit-vector \(x \) by \(n \) positions
 - Logical shift (for unsigned values)
 - Fill with 0’s on left
 - Arithmetic shift (for signed values)
 - Replicate most significant bit on left (maintains sign of \(x \))

8-bit example:

<table>
<thead>
<tr>
<th>(x)</th>
<th>0010 0010</th>
</tr>
</thead>
<tbody>
<tr>
<td>(x<<3)</td>
<td>0001 0000</td>
</tr>
<tr>
<td>logical: (x>>2)</td>
<td>0000 1000</td>
</tr>
<tr>
<td>arithmetic: (x>>2)</td>
<td>0000 1000</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>(x)</th>
<th>1010 0010</th>
</tr>
</thead>
<tbody>
<tr>
<td>(x<<3)</td>
<td>0001 0000</td>
</tr>
<tr>
<td>logical: (x>>2)</td>
<td>0010 1000</td>
</tr>
<tr>
<td>arithmetic: (x>>2)</td>
<td>1110 1000</td>
</tr>
</tbody>
</table>
Shift Operations (Review)

- **Arithmetic:**
 - Left shift \((x<<n)\) is equivalent to **multiply by** \(2^n\)
 - Right shift \((x>>n)\) is equivalent to **divide by** \(2^n\)
 - Shifting is faster than general multiply and divide operations! (compiler will try to optimize for you)

- **Notes:**
 - Shifts by \(n<0\) or \(n\geq w\) (\(w\) is bit width of \(x\)) are **undefined**
 - **In C:** behavior of \(>>\) is determined by the compiler
 - In gcc / C lang, depends on data type of \(x\) (signed/unsigned)
 - **In Java:** logical shift is \(>>>\) and arithmetic shift is \(>>\)
Left Shifting Arithmetic 8-bit Example

- No difference in left shift operation for unsigned and signed numbers (just manipulates bits)
 - Difference comes during interpretation: \(x \times 2^n \)?

<table>
<thead>
<tr>
<th>Signed</th>
<th>Unsigned</th>
</tr>
</thead>
<tbody>
<tr>
<td>x = 25; 00011001 = 25 25</td>
<td></td>
</tr>
<tr>
<td>L1=x<<2; 001100100 = 100 100</td>
<td></td>
</tr>
<tr>
<td>L2=x<<3; 0011001000 = -56 200</td>
<td></td>
</tr>
<tr>
<td>L3=x<<4; 00110010000 = -112 144</td>
<td></td>
</tr>
</tbody>
</table>

- signed overflow
- unsigned overflow
Right Shifting Arithmetic 8-bit Examples

- **Reminder:** C operator `>>` does *logical* shift on *unsigned* values and *arithmetic* shift on *signed* values
 - **Logical Shift:** \(x / 2^n \)?

\[
xu = 240u; \quad 11110000 \quad = \quad 240
\]

\[
R1u=xu>>3; \quad 00011110000 \quad = \quad 30
\]

\[
R2u=xu>>5; \quad 0000011110000 \quad = \quad 7
\]

(25)
Right Shifting Arithmetic 8-bit Examples

- **Reminder:** C operator `>>` does *logical* shift on unsigned values and *arithmetic* shift on signed values.
 - Arithmetic Shift: $x / 2^n$?

- $x_s = -16; \ 11110000 = -16$
- $R1_s = x_u >> 3; \ 11111110000 = -2$ \(\approx -0.5 \)
- $R2_s = x_u >> 5; \ 1111111110000 = -1$ \(\approx -0.5 \)
Exploration Questions

For the following expressions, find a value of signed char \(x \), if there exists one, that makes the expression True.

- **Assume we are using 8-bit arithmetic:**
 - \(x == (\text{unsigned char}) x \)
 - Example: \(x = 0 \)
 - All solutions: works for all \(x \)
 - \(x >= 128U \)
 - \(x = -1 \)
 - Any \(x < 0 \)
 - \(x != (x>>2)<<2 \)
 - \(x = 3 \)
 - Any \(x \) where lowest two bits are not 0b00
 - \(x == -x \)
 - Hint: there are two solutions
 - \(x = 0 \)
 - \(x = 0b0...0 = 0 \)
 - \(x = 0b10...0 = -128 \)
 - Any \(x \) where upper two bits are exactly 0b01
 - \((x < 128U) \&\& (x > 0x3F) \)
 - \(UMin = 0, UMax = 255 \)
 - 8-bits, so \(Tmin = -128, Tmax = 127 \)
Summary

- Sign and unsigned variables in C
 - Bit pattern remains the same, just *interpreted* differently
 - Strange things can happen with our arithmetic when we convert/cast between sign and unsigned numbers
 - Type of variables affects behavior of operators (shifting, comparison)

- We can only represent so many numbers in w bits
 - When we exceed the limits, *arithmetic overflow* occurs
 - *Sign extension* tries to preserve value when expanding

- Shifting is a useful bitwise operator
 - Right shifting can be arithmetic (sign) or logical (0)
 - Can be used in multiplication with constant or bit masking
Some examples of using shift operators in combination with bitmasks, which you may find helpful for Lab 1b.

- Extract the 2nd most significant byte of an \texttt{int}
- Extract the sign bit of a signed \texttt{int}
- Conditionals as Boolean expressions
Using Shifts and Masks

- **Extract the 2nd most significant byte of an \texttt{int}:**
 - First shift, then mask: \((x\gg16) & 0xFF\)

<table>
<thead>
<tr>
<th>(x)</th>
<th>00000001 00000010 00000011 00000100</th>
</tr>
</thead>
<tbody>
<tr>
<td>(x\gg16)</td>
<td>00000000 00000000 00000001 00000010</td>
</tr>
<tr>
<td>0xFF</td>
<td>00000000 00000000 00000000 11111111</td>
</tr>
<tr>
<td>((x\gg16) & 0xFF)</td>
<td>00000000 00000000 00000000 00000010</td>
</tr>
</tbody>
</table>

- Or first mask, then shift: \((x \& 0xFF0000) \gg 16\)

<table>
<thead>
<tr>
<th>(x)</th>
<th>00000001 00000010 00000011 00000100</th>
</tr>
</thead>
<tbody>
<tr>
<td>0xFF0000</td>
<td>00000000 11111111 00000000 00000000</td>
</tr>
<tr>
<td>(x & 0xFF0000)</td>
<td>00000000 00000010 00000000 00000000</td>
</tr>
<tr>
<td>((x&0xFF0000) \gg 16)</td>
<td>00000000 00000000 00000000 00000010</td>
</tr>
</tbody>
</table>
Using Shifts and Masks

Extract the *sign bit* of a signed *int*:

- First shift, then mask: \((x >> 31) \& 0x1\)
 - Assuming arithmetic shift here, but this works in either case
 - Need mask to clear 1s possibly shifted in

<table>
<thead>
<tr>
<th>(x)</th>
<th>00000001 00000010 00000011 00000100</th>
</tr>
</thead>
<tbody>
<tr>
<td>(x >> 31)</td>
<td>00000000 00000000 00000000 00000000</td>
</tr>
<tr>
<td>0x1</td>
<td>00000000 00000000 00000000 00000000</td>
</tr>
<tr>
<td>((x >> 31) & 0x1)</td>
<td>00000000 00000000 00000000 00000000</td>
</tr>
</tbody>
</table>
Using Shifts and Masks

- **Conditionals as Boolean expressions**
 - For `int x`, what does `(x<<31)>>31` do?

<table>
<thead>
<tr>
<th>x=!!123</th>
<th>00000000 00000000 00000000 00000001</th>
</tr>
</thead>
<tbody>
<tr>
<td>x<<31</td>
<td>10000000 00000000 00000000 00000000</td>
</tr>
<tr>
<td>(x<<31)>>31</td>
<td>11111111 11111111 11111111 11111111</td>
</tr>
<tr>
<td>!x</td>
<td>00000000 00000000 00000000 00000000</td>
</tr>
<tr>
<td>!x<<31</td>
<td>00000000 00000000 00000000 00000000</td>
</tr>
<tr>
<td>(!x<<31)>>31</td>
<td>00000000 00000000 00000000 00000000</td>
</tr>
</tbody>
</table>

- Can use in place of conditional:
 - In C: `if(x) {a=y;} else {a=z;}` equivalent to `a=x?y:z;`
 - `a=(((!x<<31)>>31)&y) | (((!x<<31)>>31)&z);`