Data III \& Integers I

CSE 351 Spring 2022

Instructor:

Ruth Anderson

Teaching Assistants:

Melissa Birchfield Jacob Christy
Alena Dickmann
Kyrie Dowling
Ellis Haker
Maggie Jiang
Diya Joy
Anirudh Kumar
Jim Limprasert
Armin Magness
Hamsa Shankar
Dara Stotland
Jeffery Tian
Assaf Vayner
Tom Wu
Angela Xu
Effie Zheng

Relevant Course Information

* Lab 0 and hw2 due tonight (4/04) @ 11:59 pm
* hw3 due Wednesday (4/06) @ 11:59 pm
* hw4 due Friday (4/08) @ 11:59 pm
* From here on out, at 11am on day of lecture:
- Reading for that lecture is DUE at 11am
- Lecture activities from the previous lecture are DUE at 11am

Lab 1a released!

* Labs can be found linked on our course home page:
- https://courses.cs.washington.edu/courses/cse351/21sp/labs/lab1a.php
* Workflow:
1)Edit pointer.c
2)Run the Makefile (make clean followed by make) and check for compiler errors \& warnings

3) Run ptest (./ptest) and check for correct behavior
4)Run rule/syntax checker (python3 dlc.py) and check output

* Due Monday 4/11, will overlap a bit with Lab 1b
- Submit in Gradescope - we grade just your last submission
- Don't wait until the last minute to submit! Check autograder output!

Lab Synthesis Questions

* All subsequent labs (after Lab 0) have a "synthesis question" portion
- Can be found on the lab specs and are intended to be done after you finish the lab
- You will type up your responses in a . txt file for submission on Gradescope
- These will be graded "by hand" (read by TAs)
* Intended to check your understanding of what you should have learned from the lab
- Also great practice for short answer questions on the exams

Memory, Data, and Addressing

* Representing information as bits and bytes
- Binary, hexadecimal, fixed-widths
* Organizing and addressing data in memory
- Memory is a byte-addressable array
- Machine "word" size = address size = register size
- Endianness - ordering bytes in memory
* Manipulating data in memory using C
- Assignment
- Pointers, pointer arithmetic, and arrays
* Boolean algebra and bit-level manipulations

Reading Review

* Terminology:
- Bitwise operators (\&, |, ^, ~)
- Logical operators (\&\&, | |, !)
- Short-circuit evaluation
- Unsigned integers
- Signed integers (Two’s Complement)

Review Questions

* Compute the result of the following expressions for char c = 0x81;
- c \wedge c
- ~c \& 0xA9
- c || 0x80
-!!c
* Compute the value of signed char sc = 0xF0; (Two's Complement)

Bitmasks

* Typically binary bitwise operators ($\&, \mid, \wedge$) are used with one operand being the "input" and other operand being a specially-chosen bitmask (or mask) that performs a desired operation
* Operations for a bit b (answer with $0,1, b$, or \bar{b}):
$b \& 0=$
b| $0=$
$b^{\wedge} 0=$ \qquad
b \& $1=$
b | $1=$ \qquad
$b^{\wedge} 1=$

Bitmasks

* Typically binary bitwise operators ($\&, \mid, \wedge$) are used with one operand being the "input" and other operand being a specially-chosen bitmask (or mask) that performs a desired operation
* Example: $b|0=b, b| 1=1$

Short-Circuit Evaluation

* If the result of a binary logical operator (\&\&, | |) can be determined by its first operand, then the second operand is never evaluated
- Also known as early termination
* Example: (p \&\& *p) for a pointer p to "protect" the dereference
- Dereferencing NULL (0) results in a segfault

Roadmap

C:

car $\boldsymbol{*}_{\mathrm{C}}=$ malloc (sizeof(car));
c->miles = 100;
c->gals = 17;
float mpg = get_mpg(c);
free(c);

Java:

```
```

Car c = new Car();

```
```

Car c = new Car();
c.setMiles(100);
c.setMiles(100);
c.setGals (17) ;
c.setGals (17) ;
float mpg=
float mpg=
c.getMPG();

```
```

 c.getMPG();
    ```
```

Assembly language:
Assembly
language:
get_mpg:
pushq \%rbp
pushq \%rbp
movq $\% r s p, \% r b p$
movq $\% r s p, \% r b p$
popq \%rbp
ret

Machine code:

$$
\begin{aligned}
& 0111010000011000 \\
& 100011010000010000000010 \\
& 1000100111000010 \\
& 110000011111101000011111
\end{aligned}
$$

Memory \& data Integers \& floats x86 assembly Procedures \& stacks Executables Arrays \& structs Memory \& caches Processes Virtual memory Memory allocation Java vs. C OS:

Computer system:

Numerical Encoding Design Example

* Encode a standard deck of playing cards
* 52 cards in 4 suits
- How do we encode suits, face cards?
* What operations do we want to make easy to implement?
- Which is the higher value card?
- Are they the same suit?

Two possible representations

1) 1 bit per card (52): bit corresponding to card set to 1
\square

52 cards

- "One-hot" encoding (similar to set notation)
- Drawbacks:
- Hard to compare values and suits
- Large number of bits required

2) 1 bit per suit (4), 1 bit per number (13): 2 bits set

4 suits

- Pair of one-hot encoded values (two fields)
- Easier to compare suits and values, but still lots of bits used

Two better representations

3) Binary encoding of all 52 cards - only 6 bits needed

- $2^{6}=64 \geq 52$

- Fits in one byte (smaller than one-hot encodings)
- How can we make value and suit comparisons easier?

4) Separate binary encodings of suit (2 bits) and value
(4 bits)

- Also fits in one byte, and easy to do comparisons

| \mathbf{K} | \mathbf{Q} | \mathbf{J} | $\boldsymbol{\ldots}$. | $\mathbf{3}$ | $\mathbf{2}$ | \mathbf{A} |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1101 | 1100 | 1011 | $\boldsymbol{\ldots}$ | 0011 | 0010 | 0001 |

mask: a bit vector designed to achieve a desired

Compare Card Suits

 behavior when used with a bitwise operator on another bit vector v.Here we turn all but the bits of interest in v to 0 .

\#define SUIT_MASK 0×30
int sameSuitP(char card1, char card2)

returns int SUIT_MASK $=0 \times 30=$| 0 | 0 | 1 | 1 | 0 | 0 | 0 | 0 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | equivalent

Compare Card Suits

\#define SUIT_MASK 0x30
int sameSuitP(char card1, char card2) \{ return (!((card1 \& SUIT_MASK) ^ (card2 \& SUIT_MASK))); //return (card1 \& SUIT_MASK) == (card2 \& SUIT_MASK); \}

\[

\]

| 0 | 0 | 1 | 1 | 0 | 0 | 0 | 0 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

| 0 | 0 | 1 | 1 | 0 | 0 | 0 | 0 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

=

$$
\begin{array}{|l|l|l|l|l|l|l|l|}
\hline 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\
\hline
\end{array}
$$

| 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

Compare Card Values

```
char hand[5]; // represents a 5-card hand
char cardl, card2; // two cards to compare
cardl = hand[0];
card2 = hand[1];
if (greaterValue(card1, card2) ) { ... }
```

```
#define VALUE MASK OxOF
int greaterValue(char card1, char card2)
    return ((unsigned int) (cardl & VALUE_MASK)
        (unsigned int) (card2 & VALUE_MASK));
```

\}

VALUE_MASK $=0 \times 0$ F $=$| 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| | $\begin{array}{l}\text { suit } \\ \text { value }\end{array}$ | | | | | | |

Compare Card Values

\#define VALUE_MASK 0x0F
int greaterValue (char card1, char card2) return ((unsigned int) (card1 \& VALUE_MASK) >
(unsigned int) (card2 \& VALUE_MASK));

Roadmap

C:

| car $\boldsymbol{*}_{\mathrm{C}}=$ malloc (sizeof(car)); |
| :--- |
| c->miles = 100; |
| c->gals = 17; |
| float mpg = get_mpg(c); |
| free(c); |

Java:

```
```

Car c = new Car();

```
```

Car c = new Car();
c.setMiles(100);
c.setMiles(100);
c.setGals (17) ;
c.setGals (17) ;
float mpg=
float mpg=
c.getMPG();

```
```

 c.getMPG();
    ```
```

Assembly language:
Assembly
language:
get_mpg:
pushq \%rbp
pushq \%rbp
movq $\% r s p, \% r b p$
movq $\% r s p, \% r b p$
popq \%rbp
ret

Machine code:

$$
\begin{aligned}
& 0111010000011000 \\
& 100011010000010000000010 \\
& 1000100111000010 \\
& 110000011111101000011111
\end{aligned}
$$

Memory \& data Integers \& floats x86 assembly Procedures \& stacks Executables Arrays \& structs Memory \& caches Processes Virtual memory Memory allocation Java vs. C OS:

Computer system:

Integers

* Binary representation of integers
- Unsigned and signed
* Shifting and arithmetic operations
$*$ In C: Signed, Unsigned and Casting
* Consequences of finite width representations
- Overflow, sign extension

Encoding Integers

* The hardware (and C) supports two flavors of integers
- unsigned - only the non-negatives
- signed - both negatives and non-negatives
* Cannot represent all integers with w bits
- Only 2^{w} distinct bit patterns
- Unsigned values:

$$
0 \ldots 2^{w}-1
$$

- Signed values: $\quad-2^{w-1} \ldots 2^{w-1}-1$
* Example: 8-bit integers (e.g. char)
$-\infty \longleftrightarrow+\infty$

Unsigned Integers (Review)

* Unsigned values follow the standard base 2 system
- $\mathrm{b}_{7} \mathrm{~b}_{6} \mathrm{~b}_{5} \mathrm{~b}_{4} \mathrm{~b}_{3} \mathrm{~b}_{2} \mathrm{~b}_{1} \mathrm{~b}_{0}=\mathrm{b}_{7} 2^{7}+\mathrm{b}_{6} 2^{6}+\cdots+\mathrm{b}_{1} 2^{1}+\mathrm{b}_{0} 2^{0}$
* Useful formula: $2^{\mathrm{N}-1}+2^{\mathrm{N}-2}+\ldots+2+1=2^{\mathrm{N}}-1$
- i.e., N ones in a row $=2^{\mathrm{N}}-1$
- e.g., Ob111111 = 63

Sign and Magnitude

* Designate the high-order bit (MSB) as the "sign bit"
- sign=0: positive numbers; sign=1: negative numbers
* Benefits:
- Using MSB as sign bit matches positive numbers with unsigned
- All zeros encoding is still $=0$
* Examples (8 bits):
- $0 \times 00=00000000_{2}$ is non-negative, because the sign bit is 0
- $0 x 7 F=01111111_{2}$ is non-negative $\left(+127_{10}\right)$
- $0 x 85=10000101_{2}$ is negative $\left(-5_{10}\right)$
- $0 \times 80=10000000_{2}$ is negative... zero???

Sign and Magnitude

Not used in practice for integers!

* MSB is the sign bit, rest of the bits are magnitude * Drawbacks?

Sign and Magnitude

* MSB is the sign bit, rest of the bits are magnitude * Drawbacks:
- Two representations of 0 (bad for checking equality)

Sign and Magnitude

Not used in practice for integers!

* MSB is the sign bit, rest of the bits are magnitude * Drawbacks:
- Two representations of 0 (bad for checking equality)
- Arithmetic is cumbersome
- Example: 4-3 != 4+(-3)

- Negatives "increment" in wrong direction!

Two's Complement

* Let's fix these problems:

1) "Flip" negative encodings so incrementing works

Two's Complement

* Let's fix these problems:

1) "Flip" negative encodings so incrementing works
2) "Shift" negative numbers to eliminate -0

* MSB still indicates sign!
- This is why we represent one more negative than positive number (-2^{N-1} to $2^{N-1}-1$)

Two's Complement Negatives (Review)

* Accomplished with one neat mathematical trick!
$\mathrm{b}_{\mathrm{w}-1}$ has weight $-2^{\mathrm{w}-1}$, other bits have usual weights $+2^{\mathrm{i}}$
- 4-bit Examples:
- 1010_{2} unsigned:

$$
1^{*} 2^{3}+0^{*} 2^{2}+1^{*} 2^{1}+0^{*} 2^{0}=\mathbf{1 0}
$$

- 1010_{2} two's complement:

$$
-1^{*} 2^{3}+0^{*} 2^{2}+1^{*} 2^{1}+0^{*} 2^{0}=-6
$$

- -1 represented as:
$1111_{2}=-2^{3}+\left(2^{3}-1\right)$
- MSB makes it super negative, add up all the other bits to get back up to -1

Polling Question

* Take the 4-bit number encoding $\mathrm{x}=0 \mathrm{~b} 1011$
* Which of the following numbers is NOT a valid interpretation of x using any of the number representation schemes discussed today?
- Unsigned, Sign and Magnitude, Two's Complement
- Vote in Ed Lessons
A. -4
B. -5
C. 11
D. -3
E. We're lost...

Two's Complement is Great (Review)

* Roughly same number of (+) and (-) numbers
* Positive number encodings match unsigned
* Single zero
* All zeros encoding $=0$
* Simple negation procedure:
- Get negative representation of any integer by taking bitwise complement and then adding one!

$$
(\sim x+1==-x)
$$

Summary

* Bit-level operators allow for fine-grained manipulations of data
- Bitwise AND (\&), OR (|), and NOT (~) different than logical AND (\&\&), OR (| |) , and NOT (!)
- Especially useful with bit masks
* Choice of encoding scheme is important
- Tradeoffs based on size requirements and desired operations
* Integers represented using unsigned and two's complement representations
- Limited by fixed bit width
- We'll examine arithmetic operations next lecture

