
CSE351, Spring 2022L04: Data III & Integers I

Data III & Integers I
CSE 351 Spring 2022
Instructor:
Ruth Anderson

Teaching Assistants:
Melissa Birchfield
Jacob Christy
Alena Dickmann
Kyrie Dowling
Ellis Haker
Maggie Jiang
Diya Joy
Anirudh Kumar
Jim Limprasert
Armin Magness
Hamsa Shankar
Dara Stotland
Jeffery Tian
Assaf Vayner
Tom Wu
Angela Xu
Effie Zheng

http://xkcd.com/257/

http://xkcd.com/257/

CSE351, Spring 2022L04: Data III & Integers I

Relevant Course Information

 Lab 0 and hw2 due tonight (4/04) @ 11:59 pm

 hw3 due Wednesday (4/06) @ 11:59 pm

 hw4 due Friday (4/08) @ 11:59 pm

 From here on out, at 11am on day of lecture:

 Reading for that lecture is DUE at 11am

 Lecture activities from the previous lecture are DUE at 11am

2

CSE351, Spring 2022L04: Data III & Integers I

Lab 1a released!

 Labs can be found linked on our course home page:
 https://courses.cs.washington.edu/courses/cse351/21sp/labs/lab1a.php

 Workflow:
1)Edit pointer.c

2)Run the Makefile (make clean followed by make) and
check for compiler errors & warnings

3)Run ptest (./ptest) and check for correct behavior

4)Run rule/syntax checker (python3 dlc.py) and check output

 Due Monday 4/11, will overlap a bit with Lab 1b
• Submit in Gradescope - we grade just your last submission

• Don’t wait until the last minute to submit! Check autograder output!

3

https://courses.cs.washington.edu/courses/cse351/21sp/labs/lab1a.php

CSE351, Spring 2022L04: Data III & Integers I

Lab Synthesis Questions

 All subsequent labs (after Lab 0) have a “synthesis
question” portion

 Can be found on the lab specs and are intended to be done
after you finish the lab

 You will type up your responses in a .txt file for
submission on Gradescope

 These will be graded “by hand” (read by TAs)

 Intended to check your understanding of what you
should have learned from the lab

 Also great practice for short answer questions on the exams

4

CSE351, Spring 2022L04: Data III & Integers I

Memory, Data, and Addressing

 Representing information as bits and bytes

 Binary, hexadecimal, fixed-widths

 Organizing and addressing data in memory

 Memory is a byte-addressable array

 Machine “word” size = address size = register size

 Endianness – ordering bytes in memory

 Manipulating data in memory using C

 Assignment

 Pointers, pointer arithmetic, and arrays

 Boolean algebra and bit-level manipulations

5

CSE351, Spring 2022L04: Data III & Integers I

Reading Review

 Terminology:

 Bitwise operators (&, |, ^, ~)

 Logical operators (&&, ||, !)

 Short-circuit evaluation

 Unsigned integers

 Signed integers (Two’s Complement)

6

CSE351, Spring 2022L04: Data III & Integers I

Review Questions

 Compute the result of the following expressions for
char c = 0x81;

 c ^ c

 ~c & 0xA9

 c || 0x80

 !!c

 Compute the value of signed char sc = 0xF0;

(Two’s Complement)

7

CSE351, Spring 2022L04: Data III & Integers I

Bitmasks

 Typically binary bitwise operators (&, |, ^) are used
with one operand being the “input” and other
operand being a specially-chosen bitmask (or mask)
that performs a desired operation

 Operations for a bit 𝑏 (answer with 0, 1, 𝑏, or ത𝑏):

𝑏 & 0 = ____ 𝑏 & 1 = ____

𝑏 | 0 = ____ 𝑏 | 1 = ____

𝑏 ^ 0 = ____ 𝑏 ^ 1 = ____

8

CSE351, Spring 2022L04: Data III & Integers I

Bitmasks

 Typically binary bitwise operators (&, |, ^) are used
with one operand being the “input” and other
operand being a specially-chosen bitmask (or mask)
that performs a desired operation

 Example: 𝑏|0 = 𝑏, 𝑏|1 = 1

9

01010101 ← input

| 11110000 ← bitmask

11110101

CSE351, Spring 2022L04: Data III & Integers I

Short-Circuit Evaluation

 If the result of a binary logical operator (&&, ||) can
be determined by its first operand, then the second
operand is never evaluated

 Also known as early termination

 Example: (p && *p) for a pointer p to “protect” the
dereference

 Dereferencing NULL (0) results in a segfault

10

CSE351, Spring 2022L04: Data III & Integers I

Roadmap

11

car *c = malloc(sizeof(car));

c->miles = 100;

c->gals = 17;

float mpg = get_mpg(c);

free(c);

Car c = new Car();

c.setMiles(100);

c.setGals(17);

float mpg =

c.getMPG();

get_mpg:

pushq %rbp

movq %rsp, %rbp

...

popq %rbp

ret

Java:C:

Assembly
language:

Machine
code:

0111010000011000

100011010000010000000010

1000100111000010

110000011111101000011111

Computer
system:

OS:

Memory & data
Integers & floats
x86 assembly
Procedures & stacks
Executables
Arrays & structs
Memory & caches
Processes
Virtual memory
Memory allocation
Java vs. C

CSE351, Spring 2022L04: Data III & Integers I

Numerical Encoding Design Example

 Encode a standard deck of playing cards

 52 cards in 4 suits
 How do we encode suits, face cards?

 What operations do we want to make easy to implement?
 Which is the higher value card?

 Are they the same suit?

12

CSE351, Spring 2022L04: Data III & Integers I

Two possible representations

1) 1 bit per card (52): bit corresponding to card set to 1

 “One-hot” encoding (similar to set notation)

 Drawbacks:
• Hard to compare values and suits

• Large number of bits required

2) 1 bit per suit (4), 1 bit per number (13): 2 bits set

 Pair of one-hot encoded values (two fields)

 Easier to compare suits and values, but still lots of bits used

13

52 cards

4 suits

13 numbers

CSE351, Spring 2022L04: Data III & Integers I

Two better representations

3) Binary encoding of all 52 cards – only 6 bits needed

 26 = 64 ≥ 52

 Fits in one byte (smaller than one-hot encodings)

 How can we make value and suit comparisons easier?

4) Separate binary encodings of suit (2 bits) and value
(4 bits)

 Also fits in one byte, and easy to do comparisons

14

low-order 6 bits of a byte

suit value
♣ 00

♦ 01

♥ 10

♠ 11

K Q J . . . 3 2 A

1101 1100 1011 ... 0011 0010 0001

CSE351, Spring 2022L04: Data III & Integers I

Compare Card Suits

char hand[5]; // represents a 5-card hand

char card1, card2; // two cards to compare

card1 = hand[0];

card2 = hand[1];

...

if (sameSuitP(card1, card2)) { ... }

15

SUIT_MASK = 0x30 = 0 0 1 1 0 0 0 0

suit value

mask: a bit vector designed to achieve a desired
behavior when used with a bitwise operator on
another bit vector v.
Here we turn all but the bits of interest in v to 0.

#define SUIT_MASK 0x30

int sameSuitP(char card1, char card2) {

return (!((card1 & SUIT_MASK) ^ (card2 & SUIT_MASK)));

//return (card1 & SUIT_MASK) == (card2 & SUIT_MASK);

}

returns int equivalent

CSE351, Spring 2022L04: Data III & Integers I

Compare Card Suits

16

#define SUIT_MASK 0x30

int sameSuitP(char card1, char card2) {

return (!((card1 & SUIT_MASK) ^ (card2 & SUIT_MASK)));

//return (card1 & SUIT_MASK) == (card2 & SUIT_MASK);

}

0 0 0 1 0 0 1 0 0 0 0 1 1 1 0 1

0 0 1 1 0 0 0 0 SUIT_MASK 0 0 1 1 0 0 0 0

0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 1
!(x^y) equivalent to x==y

🃂 🃎&

=

^

!

=

&

CSE351, Spring 2022L04: Data III & Integers I

Compare Card Values

17

VALUE_MASK = 0x0F = 0 0 0 0 1 1 1 1

suit value

#define VALUE_MASK 0x0F

int greaterValue(char card1, char card2) {

return ((unsigned int)(card1 & VALUE_MASK) >

(unsigned int)(card2 & VALUE_MASK));

}

char hand[5]; // represents a 5-card hand

char card1, card2; // two cards to compare

card1 = hand[0];

card2 = hand[1];

...

if (greaterValue(card1, card2)) { ... }

CSE351, Spring 2022L04: Data III & Integers I

Compare Card Values

18

#define VALUE_MASK 0x0F

int greaterValue(char card1, char card2) {

return ((unsigned int)(card1 & VALUE_MASK) >

(unsigned int)(card2 & VALUE_MASK));

}

0 0 1 0 0 0 1 0 🃂 0 0 1 0 1 1 0 1🃎
0 0 0 0 1 1 1 1 VALUE_MASK 0 0 0 0 1 1 1 1

& &

0 0 0 0 0 0 1 0 0 0 0 0 1 1 0 1

==

210 > 1310

0 (false)

CSE351, Spring 2022L04: Data III & Integers I

Roadmap

19

car *c = malloc(sizeof(car));

c->miles = 100;

c->gals = 17;

float mpg = get_mpg(c);

free(c);

Car c = new Car();

c.setMiles(100);

c.setGals(17);

float mpg =

c.getMPG();

get_mpg:

pushq %rbp

movq %rsp, %rbp

...

popq %rbp

ret

Java:C:

Assembly
language:

Machine
code:

0111010000011000

100011010000010000000010

1000100111000010

110000011111101000011111

Computer
system:

OS:

Memory & data
Integers & floats
x86 assembly
Procedures & stacks
Executables
Arrays & structs
Memory & caches
Processes
Virtual memory
Memory allocation
Java vs. C

CSE351, Spring 2022L04: Data III & Integers I

Integers

 Binary representation of integers

 Unsigned and signed

 Shifting and arithmetic operations

 In C: Signed, Unsigned and Casting

 Consequences of finite width representations

 Overflow, sign extension

20

CSE351, Spring 2022L04: Data III & Integers I

Encoding Integers

 The hardware (and C) supports two flavors of integers

 unsigned – only the non-negatives

 signed – both negatives and non-negatives

 Cannot represent all integers with 𝑤 bits

 Only 2𝑤 distinct bit patterns

 Unsigned values: 0 ... 2𝑤–1

 Signed values: −2𝑤−1 … 2𝑤−1–1

 Example: 8-bit integers (e.g. char)

21

0
-∞

+256+128−128
+𝟐𝟖+𝟐𝟖−𝟏−𝟐𝟖−𝟏

+∞

𝟎

CSE351, Spring 2022L04: Data III & Integers I

Unsigned Integers (Review)

 Unsigned values follow the standard base 2 system

 b7b6b5b4b3b2b1b0 = b72
7 + b62

6 +⋯+ b12
1 + b02

0

 Useful formula: 2N−1 + 2N−2 + … + 2 + 1 = 2N − 1

 i.e., N ones in a row = 2N − 1

 e.g., 0b111111 = 63

22

CSE351, Spring 2022L04: Data III & Integers I

Sign and Magnitude

 Designate the high-order bit (MSB) as the “sign bit”

 sign=0: positive numbers; sign=1: negative numbers

 Benefits:

 Using MSB as sign bit matches positive numbers with
unsigned

 All zeros encoding is still = 0

 Examples (8 bits):

 0x00 = 000000002 is non-negative, because the sign bit is 0

 0x7F = 011111112 is non-negative (+12710)

 0x85 = 100001012 is negative (-510)

 0x80 = 100000002 is negative...

23

... zero???

Not used in practice
for integers!

CSE351, Spring 2022L04: Data III & Integers I

Sign and Magnitude

 MSB is the sign bit, rest of the bits are magnitude

 Drawbacks?

24

0000

0001

0011

1111

1110

1100

1011

1010

1000 0111

0110

0100

0010

0101

1001

1101

+ 0

+ 1

+ 2

+ 3

+ 4

+ 5

+ 6

+ 7– 0

– 1

– 2

– 3

– 4

– 5

– 6

– 7

0000

0001

0011

1111

1110

1100

1011

1010

1000 0111

0110

0100

0010

0101

1001

1101

0

1

2

3

4

5

6

78

9

10

11

12

13

14

15

Unsigned
Sign and

Magnitude

Not used in practice
for integers!

CSE351, Spring 2022L04: Data III & Integers I

Sign and Magnitude

 MSB is the sign bit, rest of the bits are magnitude

 Drawbacks:

 Two representations of 0 (bad for checking equality)

25

0000

0001

0011

1111

1110

1100

1011

1010

1000 0111

0110

0100

0010

0101

1001

1101

+ 0

+ 1

+ 2

+ 3

+ 4

+ 5

+ 6

+ 7– 0

– 1

– 2

– 3

– 4

– 5

– 6

– 7

Sign and
Magnitude

Not used in practice
for integers!

CSE351, Spring 2022L04: Data III & Integers I

Sign and Magnitude

 MSB is the sign bit, rest of the bits are magnitude

 Drawbacks:

 Two representations of 0 (bad for checking equality)

 Arithmetic is cumbersome
• Example: 4-3 != 4+(-3)

• Negatives “increment” in wrong
direction!

26

0000

0001

0011

1111

1110

1100

1011

1010

1000 0111

0110

0100

0010

0101

1001

1101

+ 0

+ 1

+ 2

+ 3

+ 4

+ 5

+ 6

+ 7– 0

– 1

– 2

– 3

– 4

– 5

– 6

– 7

0100

+ 1011

1111

0100

- 0011

0001

4

- 3

1

✓

4

+ -3

-7

✗

Sign and
Magnitude

Not used in practice
for integers!

CSE351, Spring 2022L04: Data III & Integers I

Two’s Complement

 Let’s fix these problems:

1) “Flip” negative encodings so incrementing works

27

0000

0001

0011

1111

1110

1100

1011

1010

1000 0111

0110

0100

0010

0101

1001

1101

+ 0

+ 1

+ 2

+ 3

+ 4

+ 5

+ 6

+ 7– 7

– 6

– 5

– 4

– 3

– 2

– 1

– 0

CSE351, Spring 2022L04: Data III & Integers I

Two’s Complement

 Let’s fix these problems:

1) “Flip” negative encodings so incrementing works

2) “Shift” negative numbers to eliminate –0

 MSB still indicates sign!

 This is why we represent one
more negative than positive
number (-2𝑁−1 to 2𝑁−1 −1)

28

0000

0001

0011

1111

1110

1100

1011

1010

1000 0111

0110

0100

0010

0101

1001

1101

+ 0

+ 1

+ 2

+ 3

+ 4

+ 5

+ 6

+ 7– 8

– 7

– 6

– 5

– 4

– 3

– 2

– 1

CSE351, Spring 2022L04: Data III & Integers I

Two’s Complement Negatives (Review)

 Accomplished with one neat mathematical trick!

 4-bit Examples:
• 10102 unsigned:

1*23+0*22+1*21+0*20 = 10

• 10102 two’s complement:
-1*23+0*22+1*21+0*20 = –6

 -1 represented as:
11112 = -23+(23 – 1)
• MSB makes it super negative, add up

all the other bits to get back up to -1

29

bw−1 has weight −2w−1, other bits have usual weights +2i

. . . b0bw-1 bw-2

0000

0001

0011

1111

1110

1100

1011

1010

1000 0111

0110

0100

0010

0101

1001

1101

+ 0

+ 1

+ 2

+ 3

+ 4

+ 5

+ 6

+ 7– 8

– 7

– 6

– 5

– 4

– 3

– 2

– 1

Two’s
Complement

CSE351, Spring 2022L04: Data III & Integers I

Polling Question

 Take the 4-bit number encoding x = 0b1011

 Which of the following numbers is NOT a valid
interpretation of x using any of the number
representation schemes discussed today?

 Unsigned, Sign and Magnitude, Two’s Complement

 Vote in Ed Lessons

A. -4

B. -5

C. 11

D. -3

E. We’re lost…
30

CSE351, Spring 2022L04: Data III & Integers I

Two’s Complement is Great (Review)

 Roughly same number of (+) and (–) numbers

 Positive number encodings match unsigned

 Single zero

 All zeros encoding = 0

 Simple negation procedure:

 Get negative representation
of any integer by taking
bitwise complement and
then adding one!
(~x + 1 == -x)

31

0000

0001

0011

1111

1110

1100

1011

1010

1000 0111

0110

0100

0010

0101

1001

1101

+ 0

+ 1

+ 2

+ 3

+ 4

+ 5

+ 6

+ 7– 8

– 7

– 6

– 5

– 4

– 3

– 2

– 1

Two’s
Complement

CSE351, Spring 2022L04: Data III & Integers I

Summary

 Bit-level operators allow for fine-grained
manipulations of data
 Bitwise AND (&), OR (|), and NOT (~) different than logical

AND (&&), OR (||), and NOT (!)

 Especially useful with bit masks

 Choice of encoding scheme is important
 Tradeoffs based on size requirements and desired

operations

 Integers represented using unsigned and two’s
complement representations
 Limited by fixed bit width

 We’ll examine arithmetic operations next lecture

32

