YA/ UNIVERSITY of WASHINGTON L04: Data lll & Integers |

Data lll & Integers |

CSE 351 Spring 2022
Instructor:

Ruth Anderson

CSE351, Spring 2022

Teaching Assistants:
Melissa Birchfield
Jacob Christy

Alena Dickmann
Kyrie Dowling

Ellis Haker

Maggie Jiang

Diya Joy

Anirudh Kumar ;
Jim Limprasert :
Armin Magness
Hamsa Shankar

Dara Stotland

ALATH, DONEHLINY,
DONEHLINI, -~ ALATH,
ALATH, DONEHLW,
DDNEHLINI [)DNEHUNI
ALATH, ALAIH,
DONEHLINI - ALATH,
DE'NEHLII‘H DDNEHUNI
DUNEHHM

FOR ADDED SECURITY, AFTER
WE ENCRYPT THE DATA STREAM,
WE SEND IT THROUGH OUR
NAVATO COPE TALKER.

... 1S HE JUST USING
NAVATO WORDS FOR
"ZERD' ﬂmm "ONE" ?

WHOA, HEY, KEEP
YOUR ch DOWN!

MW

Jeffery Tian
Assaf Vayner
Tom Wu
Angela Xu
Effie Zheng

http://xkcd.com/257/

http://xkcd.com/257/

YA/ UNIVERSITY of WASHINGTON L04: Data lll & Integers |

CSE351, Spring 2022

Relevant Course Information

» Lab 0 and hw2 due tonight (4/04) @ 11:59 pm

+» hw3 due Wednesday (4/06) @ 11:59 pm

< hw4 due Friday (4/08) @ 11:59 pm

% From here on out, at 11am on day of lecture:
" Reading for that lecture is DUE at 11am

" | ecture activities from the previous lecture are DUE at 11am

CSE351, Spring 2022

YA/ UNIVERSITY of WASHINGTON L04: Data lll & Integers |

Lab 1a released!

+ Labs can be found linked on our course home page:
= https://courses.cs.washington.edu/courses/cse351/21sp/labs/labla.php

+» Workflow:
1)Edit pointer.c

2)Run the Makefile (make clean followed by make) and
check for compiler errors & warnings

3)Run ptest (. /ptest)and check for correct behavior
4)Run rule/syntax checker (python3 dlc.py)and check output

+» Due Monday 4/11, will overlap a bit with Lab 1b

- Submit in Gradescope - we grade just your /ast submission
- Don’t wait until the last minute to submit! Check autograder output!

https://courses.cs.washington.edu/courses/cse351/21sp/labs/lab1a.php

YA/ UNIVERSITY of WASHINGTON L04: Data Il & Integers | CSE351, Spring 2022

Lab Synthesis Questions

+ All subsequent labs (after Lab 0) have a “synthesis
guestion” portion

" Can be found on the lab specs and are intended to be done
after you finish the lab

" You will type up your responses ina . txt file for
submission on Gradescope

" These will be graded “by hand” (read by TAs)

+ Intended to check your understanding of what you
should have learned from the lab
= Also great practice for short answer questions on the exams

YA/ UNIVERSITY of WASHINGTON L04: Data lll & Integers |

Memory, Data, and Addressing

o

Representing information as bits and bytes

= Binary, hexadecimal, fixed-widths

o

Organizing and addressing data in memory

" Memory is a byte-addressable array

" Machine “word” size = address size = register size
®" Endianness — ordering bytes in memory

+» Manipulating data in memory using C

" Assignment

*

" Pointers, pointer arithmetic, and arrays

J
*

» Boolean algebra and bit-level manipulations

CSE351, Spring 2022

YA/ UNIVERSITY of WASHINGTON L04: Data lll & Integers |

Reading Review

+» Terminology:

Bitwise operators (&, |, A, ~)

Logical operators (&&, | |, !)
Short-circuit evaluation

Unsighed integers

Signed integers (Two’s Complement)

CSE351, Spring 2022

YA/ UNIVERSITY of WASHINGTON L04: Data lll & Integers |

CSE351, Spring 2022

Review Questions

+» Compute the result of the following expressions for
char c¢ = 0x81;

=Cc A C

" ~c & 0OxA9
=c || Ox80
= llc

+» Compute the value of signed char sc = OxFO;
(Two’s Complement)

YA/ UNIVERSITY of WASHINGTON L04: Data Il & Integers | CSE351, Spring 2022

Bitmasks

+» Typically binary bitwise operators (&, |, A) are used
with one operand being the “input” and other
operand being a specially-chosen bitmask (or mask)
that performs a desired operation

» Operations for a bit b (answer with 0, 1, b, or b):
b&0=___ b&1l=___
b|0=__ b|1=__

b "0=___ b "1=__

YA/ UNIVERSITY of WASHINGTON L04: Data lll & Integers |

CSE351, Spring 2022

Bitmasks

+» Typically binary bitwise operators (&, |, A) are used
with one operand being the “input” and other

operand being a specially-chosen bitmask (or mask)
that performs a desired operation

+~ Example: b|0 =b, b|1 =1

01010101 <« input
‘ 111710000 « bitmask
1117/0101

YA/ UNIVERSITY of WASHINGTON L04: Data Il & Integers | CSE351, Spring 2022

Short-Circuit Evaluation

« If the result of a binary logical operator (&&, | |) can
be determined by its first operand, then the second
operand is never evaluated

= Also known as early termination

+» Example: (p && *p) for a pointer p to “protect” the
dereference
= Dereferencing NULL (0) results in a segfault

10

YA/ UNIVERSITY of WASHINGTON

Roadmap

LO4: Data lll & Integers |

C: Java:
car *c = malloc(sizeof (car)); Car ¢ = new Car{() ;
c->miles = 100; c.setMiles (100);
c->gals = 17; c.setGals (17);
float mpg = get mpg(c); float mpg =
free(c); c.getMPG () ;
Assembly get mpg:
. pushg $rbp
language' movq Srsp, %rbp
Popq $rbp
ret 1$
Machine 0111010000011000
code: 100011010000010000000010
’ 1000100111000010
110000011111101000011111
Computer

system:

CSE351, Spring 2022

Memory & data
Integers & floats
x86 assembly
Procedures & stacks
Executables
Arrays & structs
Memory & caches
Processes

Virtual memory
Memory allocation
Java vs. C

11

YA/ UNIVERSITY of WASHINGTON

LO4: Data lll & Integers |

Numerical Encoding Design Example

\/
0’0

Encode a standard deck of playing cards

52 cards in 4 suits

" How do we encode suits, face cards?

CSE351, Spring 2022

What operations do we want to make easy to implement?
= Which is the higher value card?
= Are they the same suit?

4 Za & [fe s [30 s[5 s Z&&-To E-To&-!- % %
* * T R B B oS
ol F| e | e k| e BE| kE| e b bRl e el
4 e o [iaalinalea 30: Eo: a6 s Daa
e - BRI RN B el B
()
J vy v ¥ eel eel ool ool vl vl e
a e Vv |ifvw[ivw|ivw Zv’v ?,0'0 vw '.'20,0
v v v [veo|ve|ve % |YY
a | A6 | an
o &3 & aal aal aal sl aal o al] AT
7 Z o ¢ [fe 0[50 ¢ 50 0 1000 §0‘0 10 ¢ [De,0
¢ ¢ N KRN K K MO DN
L R R RN RN RN XN EXNEXY

YA/ UNIVERSITY of WASHINGTON L04: Data Il & Integers | CSE351, Spring 2022

Two possible representations

1) 1 bit per card (52): bit corresponding to card setto 1

HEEEEEEEEEEEEEEEE NSNS EEEEEEEEEEEEEEEEEEEE
52 cards

" “One-hot” encoding (similar to set notation)

= Drawbacks:
- Hard to compare values and suits
- Large number of bits required

2) 1 bit per suit (4), 1 bit per number (13): 2 bits set

4 suits

13 numbers

= Pair of one-hot encoded values (two fields)
= Easier to compare suits and values, but still lots of bits used

13

YA/ UNIVERSITY of WASHINGTON L04: Data Il & Integers | CSE351, Spring 2022

Two better representations

3) Binary encoding of all 52 cards — only 6 bits needed
= 26 =64 >52

low-order 6 bits of a byte
" Fits in one byte (smaller than one-hot encodings)
®" How can we make value and suit comparisons easier?

4) Separate binary encodings of suit (2 bits) and value

(4 bits)
suit value 800
= Also fits in one byte, and easy to do comparisons ¢ 01
K Q J 3 2 A ¢ 10
1101 1100|1011 | ... |0011{0010|0001 ® 11

14

YA/ UNIVERSITY of WASHINGTON L04: Data lll & Integers |

CSE351, Spring 2022

mask: a bit vector designed to achieve a desired
behavior when used with a bitwise operator on

Compa re Ca rd SUitS another bit vector v.

Here we turn all but the bits of interestin v to 0.
char hand[5]; // rep
char cardl, card2; // tw
cardl = hand[0];
card?2 = hand[1l];

sents a b-card hand

cards to compare

if (sameSuitP (cardl,

) { ...}

#define SUIT MASK 0x30

int sameSuitP (char cardl, char card?2) {
eturn (! ((cardl & SUIT MASK) ~ (card2 & SUIT MASK)));

return (cardl & SUIT MASK) == (erd2 & SUIT MASK);
} @Q\§§§§;:\(

returns intJ SUIT_MASK =0x30 = [0][0]1]1f0]0]0[0 \Lequivalent]-

suit value

15

YA/ UNIVERSITY of WASHINGTON L04: Data lll & Integers |

Compare Card Suits

CSE351, Spring 2022

#define SUIT MASK 0x30

int sameSuitP (char cardl,

char card?) {
(card2 & SUIT MASK))) ;

return (! ((cardl & SUIT MASK) ~
//return (cardl & SUIT MASK) ==

(card2 & SUIT MASK) ;

-
;

]
*

i e
0101011101010
& $
0101111101 0(0]0 SUIT MASK

010]0

[! (x*y) equivalent to x==y F::
0(01]0

16

YA/ UNIVERSITY of WASHINGTON L04: Data lll & Integers |

Compare Card Values

char hand[5]; // represents a 5-card hand

char cardl, card2; // two cards to compare
cardl = hand[0];

card?2 = hand[1l];

if (greaterValue(cardl, card2)) { ... }

#define VALUE MASK OxOF

int greaterValue (char cardl, char card2?) {
return ((unsigned 1int) (cardl & VALUE MASK) >
(unsigned int) (card2 & VALUE MASK)) ;

VALUE MASK =0x0F =|0]0]|0JOJ1f1f1]|1

- value
suit 17

CSE351, Spring 2022

YA/ UNIVERSITY of WASHINGTON

LO4: Data lll & Integers |

Compare Card Values

CSE351, Spring 2022

return

#define VALUE MASK

OxOF

int greaterValue (char cardl, char card?)

{

((unsigned int) (cardl & VALUE MASK)
(unsigned int) (card2 & VALUE MASK)) ;

>

PN
L 4
* X
@
3

J
-

A

VALUE MASK |0]0]|0

0l0|1]0f1]1
&

1)1

0|0|0|0]1]1

210 > 134,

0O (false)

18

YA/ UNIVERSITY of WASHINGTON

Roadmap

LO4: Data lll & Integers |

C: Java:
car *c = malloc(sizeof (car)); Car ¢ = new Car{() ;
c->miles = 100; c.setMiles (100);
c->gals = 17; c.setGals (17);
float mpg = get mpg(c); float mpg =
free(c); c.getMPG () ;
Assembly get mpg:
. pushg $rbp
language' movq Srsp, %rbp
Popq $rbp
ret 1$
Machine 0111010000011000
code: 100011010000010000000010
’ 1000100111000010
110000011111101000011111
Computer

system:

CSE351, Spring 2022

Memory & data
Integers & floats
x86 assembly
Procedures & stacks
Executables
Arrays & structs
Memory & caches
Processes

Virtual memory
Memory allocation
Java vs. C

19

YA/ UNIVERSITY of WASHINGTON L04: Data lll & Integers |

Integers

» Binary representation of integers

" Unsigned and signed
+ Shifting and arithmetic operations
» In C: Signed, Unsigned and Casting
» Consequences of finite width representations

= QOverflow, sign extension

CSE351, Spring 2022

20

YA/ UNIVERSITY of WASHINGTON L04: Data Il & Integers | CSE351, Spring 2022

Encoding Integers

+» The hardware (and C) supports two flavors of integers
" unsigned — only the non-negatives
" signed — both negatives and non-negatives

+» Cannot represent all integers with w bits
= Only 2% distinct bit patterns
" Unsigned values: 0..2"-1
= Signed values: —2W~1 .2w-1l

+» Example: 8-bit integers (e.g. char)

—128 0 +128 +256
—28-1 0 +28-1 +28

21

YA/ UNIVERSITY of WASHINGTON L04: Data Il & Integers | CSE351, Spring 2022

Unsigned Integers (Review)

» Unsigned values follow the standard base 2 system
" b7b6b5b4b3b2b1b0 —_ b727 + b626 + -+ b121 + bOZO

+ Useful formula: 2N"1+2N-24 4+24+41=2N_1

" je., Nonesinarow=2N—1
" e.g.,0b111111 =63

22

YA/ UNIVERSITY of WASHINGTON L04: Data Il & Integers | CSE351, Spring 2022

Sign and Magnitude { Not used in practice

for integ,ers!

J

+ Designate the high-order bit (MSB) as the “sign bit”
" sign=0: positive numbers; sign=1: negative numbers
+ Benefits:

= Using MSB as sign bit matches positive numbers with
unsigned

= All zeros encoding is still =0
+» Examples (8 bits):
= 0x00 = 00000000, is non-negative, because the sign bit is 0
" Ox7F =01111111, is non-negative (+127,,)
= 0x85 =10000101, is negative (-54,)
= 0x80 = 10000000, is negative... zero???

23

YA/ UNIVERSITY of WASHINGTON L04: Data Il & Integers | CSE351, Spring 2022

Not used in practice
for integers!

Sign and Magnitude

+» MSB is the sign bit, rest of the bits are magnitude
<+ Drawbacks?

15 0

14

1111
1110
1101

0000
0001
0010

1111
1110
1101

0000
0001
0010

13

12 (1100 0011 | ° “H1100 ggnang 0011 |77
Unsigned Magnitude
1111011 0100 | 4 _3\1011 0100 [, 4
1010 0101 1010
10 1001 0110 5 -2 1001 +5

1000 0111 1000 0111

24

YA/ UNIVERSITY of WASHINGTON L04: Data Il & Integers | CSE351, Spring 2022

Sign and Magnitude

Not used in practice
for integers!

+» MSB is the sign bit, rest of the bits are magnitude

« Drawbacks:

" Two representations of 0 (bad for checking equality)
-7 +0

1111
1110
1101

1100

0000
0001
0010

0011

Sign and
_3\1011 Magnitude ;0
1010

1001
1000

0111

25

YA/ UNIVERSITY of WASHINGTON L04: Data Il & Integers | CSE351, Spring 2022

Sign and Magnitude { Not used in practice]

for integ,ers!

» MSB is the sign bit, rest of the bits are magnitude
<+ Drawbacks:

" Two representations of 0 (bad for checking equality)

" Arithmetic is cumbersome -7 +0

- Example: 4-3 != 4+ (-3) 1111 0000
_s / 1110 0001 \ + 2
4 0100 4 0100 . 1101 0010 .3
- 3|- 0011 [+ -3+ 1011 1100 Signand 0011
\/ X 1010
- Negatives “increment” in wrong -2 1001 +5
direction!

1000 0111

26

YA/ UNIVERSITY of WASHINGTON L04: Data Il & Integers | CSE351, Spring 2022

Two’s Complement

+» Let’s fix these problems:

1) “Flip” negative encodings so incrementing works

27

YA/ UNIVERSITY of WASHINGTON L04: Data Il & Integers | CSE351, Spring 2022

Two’s Complement

4

+» Let’s fix these problems:

1) “Flip” negative encodings so incrementing works
2) “Shift” negative numbers to eliminate -0

L)

+» MSB still indicates sign!

" This is why we represent one
more negative than positive
number (-2¥ "1 to 2Nt —1) {1011

28

YA/ UNIVERSITY of WASHINGTON L04: Data lll & Integers |

Two’s Complement Negatives (Review)

+» Accomplished with one neat mathematical trick!

b,,_1 has weight —2%~1, other bits have usual weights +2!

byt | oo v by
= 4-bit Examples: _1 +0
-« 1010, unsigned: 1111 0000
1*¥23+0%22+1%21+0*2° = 10 _3 / 1110 0001 \ 42

- 1010, two’s complement:
“1%2340%22+1%2140%20 = -6 -4

1101 0010
1100 Two's 0011

= _1 represented as: _s\to11 Complement o100
1111, = -23+(23 - 1) 1010

1001
- MSB makes it super negative, add up 1000
all the other bits to get back up to -1

0111

29

CSE351, Spring 2022

YA/ UNIVERSITY of WASHINGTON L04: Data lll & Integers |

CSE351, Spring 2022

Polling Question

+ Take the 4-bit number encodingx = 0b1011

+» Which of the following numbers is NOT a valid
interpretation of x using any of the number
representation schemes discussed today?

" Unsigned, Sign and Magnitude, Two’s Complement
= \Vote in Ed Lessons

-5
11
. -3
We're lost...

m o O W >

30

YA/ UNIVERSITY of WASHINGTON L04: Data Il & Integers | CSE351, Spring 2022

Two’s Complement is Great (Review)

Roughly same number of (+) and (=) numbers
Positive number encodings match unsigned

Single zero

All zeros encoding =0

0000
0001
0010

1111
1110
1101

Simple negation procedure:

= Get negative representation % [1100 Two's o011 * 3
of any integer by taking _c\1011 Complement o109 |
bitwise complement and 1010
then adding one! -6\ 1001 +5
(~x + 1 == -x) 1000 0111

31

YA/ UNIVERSITY of WASHINGTON L04: Data Il & Integers | CSE351, Spring 2022

Summary

+ Bit-level operators allow for fine-grained
manipulations of data

= Bitwise AND (&), OR (]), and NOT (~) different than logical
AND (&&), OR(] |),and NOT (!)

= Especially useful with bit masks

+ Choice of encoding scheme is important

* Tradeoffs based on size requirements and desired
operations

+ Integers represented using unsigned and two’s
complement representations

= Limited by fixed bit width
= We'll examine arithmetic operations next lecture

32

