Data III & Integers I

CSE 351 Spring 2022

Instructor:

Ruth Anderson

Teaching Assistants:

Melissa Birchfield

Jacob Christy

Alena Dickmann

Kyrie Dowling

Ellis Haker

Maggie Jiang

Diya Joy

Anirudh Kumar

Jim Limprasert

Armin Magness

Hamsa Shankar

Dara Stotland

Jeffery Tian

Assaf Vayner

Tom Wu

Angela Xu

Effie Zheng

http://xkcd.com/257/

Relevant Course Information

- Lab 0 and hw2 due tonight (4/04) @ 11:59 pm
- hw3 due Wednesday (4/06) @ 11:59 pm
- hw4 due Friday (4/08) @ 11:59 pm
- From here on out, at 11am on day of lecture:
 - Reading for that lecture is DUE at 11am
 - Lecture activities from the previous lecture are DUE at 11am

Lab 1a released!

- Labs can be found linked on our course home page:
 - https://courses.cs.washington.edu/courses/cse351/21sp/labs/lab1a.php
- Workflow:
 - 1) Edit pointer.c
 - 2) Run the Makefile (make clean followed by make) and check for compiler errors & warnings
 - 3) Run ptest (./ptest) and check for correct behavior
 - 4) Run rule/syntax checker (python3 dlc.py) and check output
- Due Monday 4/11, will overlap a bit with Lab 1b
 - Submit in Gradescope we grade just your last submission
 - Don't wait until the last minute to submit! Check autograder output!

Lab Synthesis Questions

- All subsequent labs (after Lab 0) have a "synthesis question" portion
 - Can be found on the lab specs and are intended to be done after you finish the lab
 - You will type up your responses in a .txt file for submission on Gradescope
 - These will be graded "by hand" (read by TAs)
- Intended to check your understanding of what you should have learned from the lab
 - Also great practice for short answer questions on the exams

Memory, Data, and Addressing

- Representing information as bits and bytes
 - Binary, hexadecimal, fixed-widths
- Organizing and addressing data in memory
 - Memory is a byte-addressable array
 - Machine "word" size = address size = register size
 - Endianness ordering bytes in memory
- Manipulating data in memory using C
 - Assignment
 - Pointers, pointer arithmetic, and arrays
- Boolean algebra and bit-level manipulations

Reading Review

- Terminology:
 - Bitwise operators (&, |, ^, ~)
 - Logical operators (&&, | |, !)
 - Short-circuit evaluation
 - Unsigned integers
 - Signed integers (Two's Complement)

Review Questions

- Compute the result of the following expressions for char c = 0x81;
 - **■** C ∧ C
 - ~c & 0xA9
 - c || 0x80
 - !!c
- Compute the value of signed char sc = 0xF0;
 (Two's Complement)

Bitmasks

- ❖ Typically binary bitwise operators (&, |, ∧) are used with one operand being the "input" and other operand being a specially-chosen bitmask (or mask) that performs a desired operation
- * Operations for a bit b (answer with 0, 1, b, or \overline{b}):

$$b \& 0 =$$

$$b \& 1 =$$

$$b \mid 0 =$$

$$b \mid 1 =$$

$$b \land 0 = _{__}$$

Bitmasks

- ❖ Typically binary bitwise operators (&, |, ∧) are used with one operand being the "input" and other operand being a specially-chosen bitmask (or mask) that performs a desired operation
- * Example: b|0 = b, b|1 = 1

$$\begin{array}{c} 01010101 \leftarrow \mathsf{input} \\ 11110000 \leftarrow \mathsf{bitmask} \\ 11110101 \end{array}$$

Short-Circuit Evaluation

- If the result of a binary logical operator (&&, | |) can be determined by its first operand, then the second operand is never evaluated
 - Also known as early termination
- Example: (p && *p) for a pointer p to "protect" the dereference
 - Dereferencing NULL (0) results in a segfault

Roadmap

C:

```
car *c = malloc(sizeof(car));
c->miles = 100;
c->gals = 17;
float mpg = get_mpg(c);
free(c);
```

Java:

Integers & floats x86 assembly Procedures & stacks Executables Arrays & structs Memory & caches Processes Virtual memory

Memory allocation

Assembly language:

```
get_mpg:
    pushq %rbp
    movq %rsp, %rbp
    ...
    popq %rbp
    ret
```

OS:

```
Windows 10 OS X Yosemite
```

Machine code:

Computer system:

Java vs. C

Numerical Encoding Design Example

- Encode a standard deck of playing cards
- 52 cards in 4 suits
 - How do we encode suits, face cards?
- What operations do we want to make easy to implement?
 - Which is the higher value card?
 - Are they the same suit?

Two possible representations

1) 1 bit per card (52): bit corresponding to card set to 1

52 cards

- "One-hot" encoding (similar to set notation)
- Drawbacks:
 - Hard to compare values and suits
 - Large number of bits required
- 2) 1 bit per suit (4), 1 bit per number (13): 2 bits set

- Pair of one-hot encoded values (two fields)
- Easier to compare suits and values, but still lots of bits used

Two better representations

3) Binary encoding of all 52 cards – only 6 bits needed

$$2^6 = 64 \ge 52$$

low-order 6 bits of a byte

- Fits in one byte (smaller than one-hot encodings)
- How can we make value and suit comparisons easier?
- 4) Separate binary encodings of suit (2 bits) and value (4 bits)

bits) suit value

Also fits in one byte, and easy to do comparisons

K	Q	J	 3	2	Α
1101	1100	1011	 0011	0010	0001

•	00
•	01
	10
•	11

Compare Card Suits

mask: a bit vector designed to achieve a desired behavior when used with a bitwise operator on another bit vector v.

Here we turn all but the bits of interest in v to 0.

```
char hand[5];  // represents a 5-card hand
 char card1, card2; // two cards to compare
 card1 = hand[0];
 card2 = hand[1];
 if ( sameSuitP(card1, /card2) ) { ... }
#define SUIT MASK
                   0x30
int sameSuitP(char card1, char card2) {
  return (!((card1 & SUIT MASK) ^ (card2 & SUIT MASK)));
    return (card1 & SUIT MASK) == (card2 & SUIT MASK);
                                                equivalent
 returns int
            SUIT_MASK = 0x30 = |0|
                                        value
                                  suit
                                                          15
```

Compare Card Suits

```
#define SUIT MASK 0x30
int sameSuitP(char card1, char card2) {
  return (!((card1 & SUIT MASK) ^ (card2 & SUIT MASK)));
  //return (card1 & SUIT MASK) == (card2 & SUIT MASK);
                         SUIT MASK
! (x^y) equivalent to x==y
```

Compare Card Values

Compare Card Values

```
#define VALUE_MASK 0x0F
int greaterValue(char card1, char card2) {
   return ((unsigned int)(card1 & VALUE_MASK) >
        (unsigned int)(card2 & VALUE_MASK));
}
```


$$2_{10} > 13_{10}$$
0 (false)

Roadmap

C:

```
car *c = malloc(sizeof(car));
c->miles = 100;
c->gals = 17;
float mpg = get_mpg(c);
free(c);
```

Java:

Integers & floats x86 assembly Procedures & stacks Executables Arrays & structs Memory & caches Processes Virtual memory

Memory allocation

Assembly language:

```
get_mpg:
    pushq %rbp
    movq %rsp, %rbp
    ...
    popq %rbp
    ret
```

OS:

Windows 10 OS X Yosemite

Machine code:

Computer system:

Java vs. C

Integers

- Binary representation of integers
 - Unsigned and signed
- Shifting and arithmetic operations
- In C: Signed, Unsigned and Casting
- Consequences of finite width representations
 - Overflow, sign extension

Encoding Integers

- The hardware (and C) supports two flavors of integers
 - unsigned only the non-negatives
 - signed both negatives and non-negatives
- Cannot represent all integers with w bits
 - Only 2^w distinct bit patterns
 - Unsigned values: $0 \dots 2^w 1$
 - Signed values: $-2^{w-1} \dots 2^{w-1} 1$
- Example: 8-bit integers (e.g. char)

Unsigned Integers (Review)

- Unsigned values follow the standard base 2 system
 - $b_7b_6b_5b_4b_3b_2b_1b_0 = b_72^7 + b_62^6 + \dots + b_12^1 + b_02^0$
- * Useful formula: $2^{N-1} + 2^{N-2} + ... + 2 + 1 = 2^N 1$
 - *i.e.*, N ones in a row = $2^N 1$
 - *e.g.*, 0b111111 = 63

Not used in practice for integers!

- Designate the high-order bit (MSB) as the "sign bit"
 - sign=0: positive numbers; sign=1: negative numbers

Benefits:

- Using MSB as sign bit matches positive numbers with unsigned
- All zeros encoding is still = 0

Examples (8 bits):

- $0x00 = 00000000_2$ is non-negative, because the sign bit is 0
- $0x7F = 011111111_2$ is non-negative (+127₁₀)
- $0x85 = 10000101_2$ is negative (-5₁₀)
- $0x80 = 10000000_2$ is negative... zero????

Not used in practice for integers!

- MSB is the sign bit, rest of the bits are magnitude
- Drawbacks?

Not used in practice for integers!

- MSB is the sign bit, rest of the bits are magnitude
- Drawbacks:
 - Two representations of 0 (bad for checking equality)

Not used in practice for integers!

- MSB is the sign bit, rest of the bits are magnitude
- Drawbacks:
 - Two representations of 0 (bad for checking equality)
 - Arithmetic is cumbersome
 - Example: 4-3 != 4+(-3)

– /	1111
	1111
+ - 3	+ 1011
4	0100

Negatives "increment" in wrong direction!

Two's Complement

- Let's fix these problems:
 - 1) "Flip" negative encodings so incrementing works

Two's Complement

- Let's fix these problems:
 - 1) "Flip" negative encodings so incrementing works
 - 2) "Shift" negative numbers to eliminate -0

- MSB still indicates sign!
 - This is why we represent one more negative than positive number $(-2^{N-1} \text{ to } 2^{N-1} 1)$

Two's Complement Negatives (Review)

Accomplished with one neat mathematical trick!

- 4-bit Examples:
 - 1010_2 unsigned: $1*2^3+0*2^2+1*2^1+0*2^0=10$
 - 1010_2 two's complement: $-1*2^3+0*2^2+1*2^1+0*2^0 = -6$
- -1 represented as:

$$1111_2 = -2^3 + (2^3 - 1)$$

 MSB makes it super negative, add up all the other bits to get back up to -1

Polling Question

- * Take the 4-bit number encoding x = 0b1011
- Which of the following numbers is NOT a valid interpretation of x using any of the number representation schemes discussed today?
 - Unsigned, Sign and Magnitude, Two's Complement
 - Vote in Ed Lessons
 - A. -4
 - B. -5
 - C. 11
 - D. -3
 - E. We're lost...

Two's Complement is Great (Review)

- Roughly same number of (+) and (-) numbers
- Positive number encodings match unsigned
- Single zero
- All zeros encoding = 0

- Simple negation procedure:
 - Get negative representation of any integer by taking bitwise complement and then adding one!
 (~x + 1 == -x)

Summary

- Bit-level operators allow for fine-grained manipulations of data
 - Bitwise AND (&), OR (|), and NOT (\sim) different than logical AND (&&), OR (||), and NOT (!)
 - Especially useful with bit masks
- Choice of encoding scheme is important
 - Tradeoffs based on size requirements and desired operations
- Integers represented using unsigned and two's complement representations
 - Limited by fixed bit width
 - We'll examine arithmetic operations next lecture