
CSE351, Spring 2022L03: Memory & Data II

Memory, Data, & Addressing II
CSE 351 Spring 2022

Instructor:
Ruth Anderson

Teaching Assistants:
Melissa Birchfield
Jacob Christy
Alena Dickmann
Kyrie Dowling
Ellis Haker
Maggie Jiang
Diya Joy
Anirudh Kumar
Jim Limprasert
Armin Magness
Hamsa Shankar
Dara Stotland
Jeffery Tian
Assaf Vayner
Tom Wu
Angela Xu
Effie Zheng

http://xkcd.com/138/

http://xkcd.com/138/

CSE351, Spring 2022L03: Memory & Data II

Relevant Course Information

 hw1 due tonight, Friday (4/01) @ 11:59 pm

 Lab 0 and hw2 due Monday (4/04) @ 11:59 pm

 hw3 due Wednesday (4/06) @ 11:59 pm

 Lab 1a coming soon! due next Monday (4/11)
 Pointers in C

 Submitted via Gradescope

 Last submission graded, can optionally work with a partner

• One student submits, then add their partner to the submission

 Short answer “synthesis questions” for after the lab

 Ed Discussion etiquette
 For anything that doesn’t involve sensitive information or a solution,

post publicly (you can post anonymously!)

 If you feel like you question has been sufficiently answered, make sure
that a response has a checkmark

2

CSE351, Spring 2022L03: Memory & Data II

Late Days

 You are given 5 late days for the whole quarter

 Late days can only apply to Labs

 No benefit to having leftover late days

 Count lateness in days (even if just by a second)

 Special: weekends count as one day

 No submissions accepted more than two days late

 Late penalty is 20% deduction of your score per day

 Only late labs are eligible for penalties

 Penalties applied at end of quarter to maximize your grade

 Use at own risk – don’t want to fall too far behind

 Intended to allow for unexpected circumstances
3

CSE351, Spring 2022L03: Memory & Data II

Memory, Data, and Addressing

 Representing information as bits and bytes

 Binary, hexadecimal, fixed-widths

 Organizing and addressing data in memory

 Memory is a byte-addressable array

 Machine “word” size = address size = register size

 Endianness – ordering bytes in memory

 Manipulating data in memory using C

 Assignment

 Pointers, pointer arithmetic, and arrays

 Boolean algebra and bit-level manipulations

4

CSE351, Spring 2022L03: Memory & Data II

Reading Review

 Terminology:

 address-of operator (&), dereference operator (*), NULL

 box-and-arrow memory diagrams

 pointer arithmetic, arrays

 C string, null character, string literal

5

CSE351, Spring 2022L03: Memory & Data II

Review Questions

 int x = 351;

char *p = &x;

int ar[3];

 How much space does
the variable p take up?

A. 1 byte

B. 2 bytes

C. 4 bytes

D. 8 bytes

6

 Which of the following
expressions evaluate to
an address?

A. x + 10

B. p + 10

C. &x + 10

D. *(&p)

E. ar[1]

F. &ar[2]

CSE351, Spring 2022L03: Memory & Data II

Addresses and Pointers in C

 & = “address of” operator

 * = “value at address” or “dereference” operator

int* ptr;

int x = 5;

int y = 2;

ptr = &x;

y = 1 + *ptr;

7

Declares a variable, ptr, that is a pointer to
(i.e. holds the address of) an int in memory

Declares two variables, x and y, that hold ints,
and initializes them to 5 and 2, respectively

Sets ptr to the address of x
(“ptr points to x”)

Sets y to “1 plus the value stored at the
address held by ptr.” Because ptr
points to x, this is equivalent to y=1+x;“Dereference ptr”

What is *(&y) ?

* is also used with
variable declarations

CSE351, Spring 2022L03: Memory & Data II

Pointer Operators

 & = “address of” operator

 * = “value at address” or “dereference” operator

 Operator confusion

 The pointer operators are unary (i.e., take 1 operand)

 These operators both have binary forms

• x & y is bitwise AND (we’ll talk about this next lecture)

• x * y is multiplication

 * is also used as part of the data type in pointer variable
declarations – this is NOT an operator in this context!

8

CSE351, Spring 2022L03: Memory & Data II

Assignment in C

 A variable is represented by a location

 Declaration ≠ initialization (initially holds random data)

 int x, y;

 x is at address 0x04, y is at 0x18

9

x

y

0x00 0x01 0x02 0x03

A7 00 32 00
00 01 29 F3
EE EE EE EE
FA CE CA FE
26 00 00 00
00 00 10 00

01 00 00 00
FF 00 F4 96
DE AD BE EF
00 00 00 00

0x00
0x04
0x08
0x0C
0x10
0x14
0x18
0x1C
0x20
0x24

CSE351, Spring 2022L03: Memory & Data II

Assignment in C

 A variable is represented by a location

 Declaration ≠ initialization (initially holds random data)

 int x, y;

 x is at address 0x04, y is at 0x18

10

x

y

0x00 0x01 0x02 0x03

00 01 29 F3

01 00 00 00

0x00
0x04
0x08
0x0C
0x10
0x14
0x18
0x1C
0x20
0x24

32-bit example
(pointers are 32-bits wide)

little-endian

CSE351, Spring 2022L03: Memory & Data II

Assignment in C

 left-hand side = right-hand side;
 LHS must evaluate to a location
 RHS must evaluate to a value (could be an address)
 Store RHS value at LHS location

 int x, y;

 x = 0;

11

00 01 29 F300 00 00 00 x

y

0x00 0x01 0x02 0x03

01 00 00 00

0x00
0x04
0x08
0x0C
0x10
0x14
0x18
0x1C
0x20
0x24

& = “address of”
* = “dereference”

32-bit example
(pointers are 32-bits wide)

CSE351, Spring 2022L03: Memory & Data II

Assignment in C

 left-hand side = right-hand side;
 LHS must evaluate to a location
 RHS must evaluate to a value (could be an address)
 Store RHS value at LHS location

 int x, y;

 x = 0;

 y = 0x3CD02700;

12

00 00 00 00

01 00 00 0000 27 D0 3C

x

y

0x00 0x01 0x02 0x03

0x00
0x04
0x08
0x0C
0x10
0x14
0x18
0x1C
0x20
0x24

little endian!

& = “address of”
* = “dereference”

32-bit example
(pointers are 32-bits wide)

CSE351, Spring 2022L03: Memory & Data II

Assignment in C

 left-hand side = right-hand side;
 LHS must evaluate to a location
 RHS must evaluate to a value (could be an address)
 Store RHS value at LHS location

 int x, y;

 x = 0;

 y = 0x3CD02700;

 x = y + 3;

 Get value at y, add 3, store in x

13

00 00 00 00

00 27 D0 3C

03 27 D0 3C x

y

0x00 0x01 0x02 0x03

0x00
0x04
0x08
0x0C
0x10
0x14
0x18
0x1C
0x20
0x24

& = “address of”
* = “dereference”

32-bit example
(pointers are 32-bits wide)

CSE351, Spring 2022L03: Memory & Data II

Assignment in C

 left-hand side = right-hand side;
 LHS must evaluate to a location
 RHS must evaluate to a value (could be an address)
 Store RHS value at LHS location

 int x, y;

 x = 0;

 y = 0x3CD02700;

 x = y + 3;

 Get value at y, add 3, store in x

 int* z;

 z is at address 0x20

14

03 27 D0 3C

00 27 D0 3C

x

y

0x00 0x01 0x02 0x03

0x00
0x04
0x08
0x0C
0x10
0x14
0x18
0x1C
0x20
0x24

zDE AD BE EF

& = “address of”
* = “dereference”

32-bit example
(pointers are 32-bits wide)

CSE351, Spring 2022L03: Memory & Data II

Assignment in C

 left-hand side = right-hand side;
 LHS must evaluate to a location
 RHS must evaluate to a value (could be an address)
 Store RHS value at LHS location

 int x, y;

 x = 0;

 y = 0x3CD02700;

 x = y + 3;

 Get value at y, add 3, store in x

 int* z = &y + 3;

 Get address of y, “add 3”, store in z

15

03 27 D0 3C

00 27 D0 3C

x

y

0x00 0x01 0x02 0x03

0x00
0x04
0x08
0x0C
0x10
0x14
0x18
0x1C
0x20
0x24

z24 00 00 00

Pointer arithmetic

& = “address of”
* = “dereference”

32-bit example
(pointers are 32-bits wide)

CSE351, Spring 2022L03: Memory & Data II

Pointer Arithmetic

 Pointer arithmetic is scaled by the size of target type
 In this example, sizeof(int) = 4

 int* z = &y + 3;

 Get address of y, add 3*sizeof(int), store in z

 &y = 0x18

 24 + 3*(4) = 36

 Pointer arithmetic can be dangerous!

 Can easily lead to bad memory accesses

 Be careful with data types and casting

16

= 1*161 + 8*160 = 24

= 2*161 + 4*160 = 0x24

CSE351, Spring 2022L03: Memory & Data II

Assignment in C

 int x, y;

 x = 0;

 y = 0x3CD02700;

 x = y + 3;

 Get value at y, add 3, store in x

 int* z = &y + 3;

 Get address of y, add 12, store in z

 *z = y;

 What does this do?

17

03 27 D0 3C

00 27 D0 3C

x

y

0x00 0x01 0x02 0x03

0x00
0x04
0x08
0x0C
0x10
0x14
0x18
0x1C
0x20
0x24

z24 00 00 00

& = “address of”
* = “dereference”

32-bit example
(pointers are 32-bits wide)

CSE351, Spring 2022L03: Memory & Data II

Assignment in C

 int x, y;

 x = 0;

 y = 0x3CD02700;

 x = y + 3;

 Get value at y, add 3, store in x

 int* z = &y + 3;

 Get address of y, add 12, store in z

 *z = y;

 Get value of y, put in address
stored in z

18

03 27 D0 3C

00 27 D0 3C

x

y

0x00 0x01 0x02 0x03

0x00
0x04
0x08
0x0C
0x10
0x14
0x18
0x1C
0x20
0x24

z24 00 00 00
00 27 D0 3C

The target of a pointer
is also a location

& = “address of”
* = “dereference”

32-bit example
(pointers are 32-bits wide)

CSE351, Spring 2022L03: Memory & Data II

Arrays in C

Declaration: int a[6];

19

0x00

0x08

0x10

0x18

0x20

0x28

0x30

0x38

0x40

0x48

a[0]

a[2]

a[4]

a (array name) returns the array’s address

Arrays are adjacent locations in memory
storing the same type of data object

element type

name
number of
elements

a[1]

a[3]

a[5]

0x4
0xC

0x5
0xD

0x6
0xE

0x7
0xF

0x0
0x8

0x1
0x9

0x2
0xA

0x3
0xB

64-bit example
(pointers are 64-bits wide)

CSE351, Spring 2022L03: Memory & Data II

Arrays in C

Declaration: int a[6];

Indexing: a[0] = 0x015f;

a[5] = a[0];

20

0x00

0x08

0x10

0x18

0x20

0x28

0x30

0x38

0x40

0x48

a[0]

a[2]

a[4]

0x4
0xC

0x5
0xD

0x6
0xE

0x7
0xF

0x0
0x8

0x1
0x9

0x2
0xA

0x3
0xB

0000015F

0000015F

&a[i] is the address of a[0] plus i times
the element size in bytes

Arrays are adjacent locations in memory
storing the same type of data object

a (array name) returns the array’s address

CSE351, Spring 2022L03: Memory & Data II

Arrays in C

Declaration: int a[6];

Indexing: a[0] = 0x015f;

a[5] = a[0];

No bounds a[6] = 0xBAD;

checking: a[-1] = 0xBAD;

21

0x00

0x08

0x10

0x18

0x20

0x28

0x30

0x38

0x40

0x48

a[0]

a[2]

a[4]

0x4
0xC

0x5
0xD

0x6
0xE

0x7
0xF

0x0
0x8

0x1
0x9

0x2
0xA

0x3
0xB

0000015F

0000015F

00000BAD

00000BAD

&a[i] is the address of a[0] plus i times
the element size in bytes

Arrays are adjacent locations in memory
storing the same type of data object

a (array name) returns the array’s address

CSE351, Spring 2022L03: Memory & Data II

0000015F

Arrays in C

Declaration: int a[6];

Indexing: a[0] = 0x015f;

a[5] = a[0];

No bounds a[6] = 0xBAD;

checking: a[-1] = 0xBAD;

Pointers: int* p;

p = a;

p = &a[0];

*p = 0xA;

22

0000000A

0x00

0x08

0x10

0x18

0x20

0x28

0x30

0x38

0x40

0x48

a[0]

a[2]

a[4]

0x4
0xC

0x5
0xD

0x6
0xE

0x7
0xF

0x0
0x8

0x1
0x9

0x2
0xA

0x3
0xB

0000015F

00000BAD

00000BAD

p

equivalent

00000010 00000000

&a[i] is the address of a[0] plus i times
the element size in bytes

Arrays are adjacent locations in memory
storing the same type of data object

a (array name) returns the array’s address

CSE351, Spring 2022L03: Memory & Data II

array indexing = address arithmetic
(both scaled by the size of the type)

0000015F

Arrays in C

Declaration: int a[6];

Indexing: a[0] = 0x015f;

a[5] = a[0];

No bounds a[6] = 0xBAD;

checking: a[-1] = 0xBAD;

Pointers: int* p;

p = a;

p = &a[0];

*p = 0xA;

p[1] = 0xB;

*(p+1) = 0xB;

p = p + 2;

23

0000000A

0x00

0x08

0x10

0x18

0x20

0x28

0x30

0x38

0x40

0x48

a[0]

a[2]

a[4]

0x4
0xC

0x5
0xD

0x6
0xE

0x7
0xF

0x0
0x8

0x1
0x9

0x2
0xA

0x3
0xB

0000015F

00000BAD

00000BAD

p

equivalent

00000010 00000000

equivalent

0000000B

&a[i] is the address of a[0] plus i times
the element size in bytes

Arrays are adjacent locations in memory
storing the same type of data object

a (array name) returns the array’s address

CSE351, Spring 2022L03: Memory & Data II

array indexing = address arithmetic
(both scaled by the size of the type)

Arrays in C

Declaration: int a[6];

Indexing: a[0] = 0x015f;

a[5] = a[0];

No bounds a[6] = 0xBAD;

checking: a[-1] = 0xBAD;

Pointers: int* p;

p = a;

p = &a[0];

*p = 0xA;

p[1] = 0xB;

*(p+1) = 0xB;

p = p + 2;

*p = a[1] + 1;
24

0x00

0x08

0x10

0x18

0x20

0x28

0x30

0x38

0x40

0x48

a[0]

a[2]

a[4]

0x4
0xC

0x5
0xD

0x6
0xE

0x7
0xF

0x0
0x8

0x1
0x9

0x2
0xA

0x3
0xB

equivalent

equivalent

0000000A

0000015F

00000BAD

00000BAD

00000018 00000000

0000000B

p

0000000C

&a[i] is the address of a[0] plus i times
the element size in bytes

Arrays are adjacent locations in memory
storing the same type of data object

a (array name) returns the array’s address

CSE351, Spring 2022L03: Memory & Data II

Question: The variable values after Line 3 executes are
shown on the right. What are they after Line 5?

 Vote in Ed Lessons

25

1 void main() {

2 int a[] = {0x5,0x10};

3 int* p = a;

4 p = p + 1;

5 *p = *p + 1;

6 }

0x101 0x5 0x11(A)

0x104 0x5 0x11(B)

0x101 0x6 0x10(C)

(D)

p a[0] a[1]

0x100a[0]

a[1]

p

5
10

100

...

Address
(hex)

Data
(hex)

CSE351, Spring 2022L03: Memory & Data II

Representing strings (Review)

 C-style string stored as an array of bytes (char*)

 No “String” keyword, unlike Java

 Elements are one-byte ASCII codes for each character

26

32 space 48 0 64 @ 80 P 96 ` 112 p

33 ! 49 1 65 A 81 Q 97 a 113 q

34 ” 50 2 66 B 82 R 98 b 114 r

35 # 51 3 67 C 83 S 99 c 115 s
36 $ 52 4 68 D 84 T 100 d 116 t

37 % 53 5 69 E 85 U 101 e 117 u

38 & 54 6 70 F 86 V 102 f 118 v

39 ’ 55 7 71 G 87 W 103 g 119 w

40 (56 8 72 H 88 X 104 h 120 x

41) 57 9 73 I 89 Y 105 I 121 y

42 * 58 : 74 J 90 Z 106 j 122 z

43 + 59 ; 75 K 91 [107 k 123 {

44 , 60 < 76 L 92 \ 108 l 124 |

45 - 61 = 77 M 93] 109 m 125 }

46 . 62 > 78 N 94 ^ 110 n 126 ~

47 / 63 ? 79 O 95 _ 111 o 127 del

ASCII: American Standard Code for Information Interchange

CSE351, Spring 2022L03: Memory & Data II

Representing strings (Review)

 C-style string stored as an array of bytes (char*)

 No “String” keyword, unlike Java

 Elements are one-byte ASCII codes for each character

 Last character followed by a 0 byte ('\0')
(a.k.a. "null character")

27

Decimal:.. 83 116 97 121 32 115 97 102 101 32 87 65 0

Hex:.. 0x53 0x74 0x61 0x79 0x20 0x73 0x61 0x66 0x65 0x20 0x57 0x41 0x00

Text:.. 'S' 't' 'a' 'y' ' ' 's' 'a' 'f' 'e' ' ' 'W' 'A' '\0'

CSE351, Spring 2022L03: Memory & Data II

char s[6] = "12345";

Endianness and Strings

 Byte ordering (endianness) is not an issue for 1-byte
values
 The whole array does not constitute a single value

 Individual elements are values; chars are single bytes

28

C (char = 1 byte)

0x31 = 49 decimal = ASCII ‘1’ 33
34

31
32

35
00

33
34

31
32

35
00

0x00
0x01
0x02
0x03

0x04
0x05

0x00
0x01
0x02
0x03
0x04
0x05

'1'

'2'

'3'

'4'

'5'

'\0'

IA32, x86-64
(little-endian)

SPARC
(big-endian)

String literal

CSE351, Spring 2022L03: Memory & Data II

Examining Data Representations

 Code to print byte representation of data
 Treat any data type as a byte array by casting its address to char*

 C has unchecked casts !! DANGER !!

 printf directives:
 %p Print pointer

 \t Tab

 %.2hhX Print value as char (hh) in hex (X), padding to 2 digits (.2)

 \n New line
29

void show_bytes(char* start, int len) {

int i;

for (i = 0; i < len; i++)

printf("%p\t0x%.2hhX\n", start+i, *(start+i));

printf("\n");

}

CSE351, Spring 2022L03: Memory & Data II

Examining Data Representations

 Code to print byte representation of data
 Treat any data type as a byte array by casting its address to char*

 C has unchecked casts !! DANGER !!

30

void show_bytes(char* start, int len) {

int i;

for (i = 0; i < len; i++)

printf("%p\t0x%.2hhX\n", start+i, *(start+i));

printf("\n");

}

void show_int(int x) {

show_bytes((char *) &x, sizeof(int));

}

CSE351, Spring 2022L03: Memory & Data II

show_bytes Execution Example

 Result (Linux x86-64):

 Note: The addresses will change on each run (try it!), but
fall in same general range

31

int x = 123456; // 0x00 01 E2 40

printf("int x = %d;\n", x);

show_int(x); // show_bytes((char *) &x, sizeof(int));

int x = 123456;

0x7fffb245549c 0x40

0x7fffb245549d 0xE2

0x7fffb245549e 0x01

0x7fffb245549f 0x00

CSE351, Spring 2022L03: Memory & Data II

Summary

 Assignment in C results in value being put in memory
location

 Pointer is a C representation of a data address
 & = “address of” operator

 * = “value at address” or “dereference” operator

 Pointer arithmetic scales by size of target type

 Convenient when accessing array-like structures in memory

 Be careful when using – particularly when casting variables

 Arrays are adjacent locations in memory storing the
same type of data object

 Strings are null-terminated arrays of characters (ASCII)

32

