
Question 1: Structs

For this question, assume a 64-bit machine and the following C struct de�inition.

typedef struct {

char* title; // title (e.g. "HW SW INTERFACE")

char dept[3]; // dept (e.g. "CSE")

short num; // course number (e.g. 351)

int enrolled; // students enrolled

} course;

(A) How much memory, in bytes, does an instance of course use? How many of those bytes are
internal fragmentation and external fragmentation?

sizeof(course) Internal External

40 bytes 2 bytes 4 bytes

(B) Assume that an instance course c is allocated on the stack and an array char ar[] is allocated
40 bytes below c (i.e. &ar + 0x28 == (char*)&c). Fill in the blanks below with the new ASCII
characters stored in c.dept after the following loop is executed. Hint: recall that the values
0x30 to 0x39 correspond to the ASCII characters '0' to '9'.

for (int i = 0; i < 52; ++i) {

ar[i] = i;

}

c.dept[0]: ‘____’

c.dept[1]: ‘____’

c.dept[2]: ‘____’

Question 2: Caching

We have 256 KiB of RAM and a 4-KiB L1 data cache that is 2-way set associative with 32-byte
blocks and random replacement, write-back, and write allocate policies.

(A) Calculate the TIO address breakdown:
Tag bits Index bits Offset bits

7 6 5

(B) The code snippet below accesses two arrays of doubles. Assuming i is stored in a register and
the cache starts cold, give the memory access pattern (read or write to which
elements/addresses) and compute the miss rate.

#define SIZE 128

double src[SIZE]; // &src = 0x08000 (physical addr)

double dst[SIZE]; // &dst = 0x0E000 (physical addr)

for (int i = 0; i < SIZE; i += 1) {

dst[i] = src[i];

src[i] = i;

}

Per Iteration: Access 1: Access 2: Access 3:
(circle) → R / W to R / W to R / W to
(�ill in) → ______[i] ______[i] ______[i]

Code Miss Rate:

(C) For each of the proposed (independent) changes, draw ↑ for “increased”, ― for “no change”,
or ↓ for “decreased” to indicate the effect on the miss rate from Part B for the code above:

Use �loat instead ___________ Double the cache size ___________

Half the associativity __________ No-write allocate ___________

(D) Assume it takes 160 ns to get a block of data from main memory. If our L1 data cache
has a hit time of 5 ns and a miss rate of 5%, what is our average memory access time
(AMAT)?

13 ns

Question 3: Processes

(A) The following function prints out four numbers. In the following blanks, list three
possible outcomes:

void concurrent(void) {

int n = 5;
if (fork()) {
n++;
if (fork()) {

n++;
wait();

}
printf("%d, ", n);
exit(0);

} else {
printf("%d, ", n);

}
printf("%d, ", n);
exit(0);
}

(1) ___________________________

(2) ___________________________

(3) ___________________________

(B) For the following examples of exception causes, write “S” for synchronous or “A” for
asynchronous from the perspective of the user process.

System call _____________ Divide by zero ___________

Segmentation fault __________ Key pressed ____________

(C) Fill in the following blanks with “A” for always, “S” for sometimes, and “N” for never if
the following would be different when context switching to a different process?

Process ID ______ Program ______ PTBR ______ Condition Codes ________

(D) Is the following statement True or False? Provide a brief justi�ication: a single process
can execute multiple programs simultaneously.

Circle one: True / False
Justi�ication: One process is dedicated to running one program at a time. The program
de�ines the instructions, initial memory state, etc. of the process, so two programs
can’t exist within the same process at once.

Question 4: Virtual Memory

Our system has the following setup:
• 15-bit virtual addresses and 2 KiB of RAM with 256-byte pages
• A 4-entry fully-associative TLB with LRU replacement
• A PTE contains bits for valid (V), dirty (D), read (R), write (W), and execute (X)

(A) Compute the following values:

page offset width _______ # of TLB sets _______

of virtual pages _______ minimum width of PTBR _______

(B) Assuming that the TLB is in the state shown (permission bits: 1 = allowed, 0 = disallowed),
give example addresses that will ful�ill the following scenarios:

TLBT PPN Valid D R W X

0x20 0xc 1 0 1 0 0

0x7f 0xa 1 0 1 1 0

0x7e 0xf 1 0 1 1 0

0x04 0xe 1 0 1 1 1

A value in %rip that causes a TLB Hit and no exception:

A write address that causes a TLB Hit and segmentation fault:

Question 5: Memory Allocation

1 #include <stdlib.h>
2 float pi = 3.14;
3
4 int main(int argc, char *argv[]) {
5 int year = 2019;
6 int* happy = malloc(sizeof(int*));
7 happy++;
8 free(happy);
9 return 0;
10 }

(A) Consider the C code shown above. Assume that the malloc call succeeds and happy and
year are stored in memory (not in a register). Fill in the following blanks with “<” or “>”
or “UNKNOWN” to compare the values returned by the following expressions just before
return 0.

&year __________ &main

happy __________ &happy

&pi __________ happy

(B)] The code above has two memory-related errors. Use the line numbers in the code to
describe what the errors are and where they occur.

Error #1:

Error #2:

(C) (Not related to code at top of page) Give one advantage that next �it placement policy has
over a �irst �it placement policy in an implicit free list implementation.

(D) List two reasons why it would be hard to write a garbage collector for the C
programming language.

Reason #1:

Reason #2:

Question 6: Java vs. C

This is an open-ended question, just make sure to avoid repeating the same point but worded
differently or listing the same point but worded in opposite ways for both questions.

(A) Describe two distinct ways or things that you think C does better than Java.
1.

2.

(B) Describe two distinct ways or things that Java does better than C.

1.

2.

