
Question 1: Structs

For this question, assume a 64-bit machine and the following C struct definition.

typedef struct { K:

char* title; 8 // title (e.g. "HW SW INTERFACE")

char dept[3]; 1 // dept (e.g. "CSE")

short num; 2 // course number (e.g. 351)

int enrolled; 4 // students enrolled

} course; Kmax = 8

(A) How much memory, in bytes, does an instance of course use? How many of those bytes are
internal fragmentation and external fragmentation?

sizeof(course) Internal External

24 bytes 3 bytes 4 bytes

Alignment requirements listed above in red next to the struct fields. A course instance:

title dept num enrolled

0 8 11 12 14 16 20 24

The unused bytes around num count as internal fragmentation, the unused bytes after enrolled count
as external fragmentation.

(B) Assume that an instance course c is allocated on the stack and an array char ar[] is  allocated
40 bytes below c (i.e. &ar + 0x28 == (char*)&c). Fill in the blanks below with  the new ASCII
characters stored in c.dept after the following loop is executed. Hint: recall that  the values
0x30 to 0x39 correspond to the ASCII characters '0' to '9'.

for (int i = 0; i < 52; ++i) {

ar[i] = i;

}

c.dept[0]: ‘0’

c.dept[1]: ‘1’

c.dept[2]: ‘2’



Starting from the beginning of ar, we store the values 0 to 39  before we reach the struct c. TheStarting
from the beginning of ar, we store the values 0 to 39  before we reach the struct c. The values 40 to 47
overwrite the  bytes of c.title (address 0x2f2e2d2c2b2a2928, assuming  little-endian). c.dept then gets
overwritten with the values 48  = 0x30 = '0', 49 = 0x31 = '1', and 50 = 0x32 = '2'.

Question 2: Caching

We have 256 KiB of RAM and a 4-KiB L1 data cache that is 2-way set associative with 32-byte
blocks  and random replacement, write-back, and write allocate policies.

(A) Calculate the TIO address breakdown:
Tag bits Index bits Offset bits

7 6 5

18 address bits. log232 = 5 offset bits. 212-B cache = 128 blocks. 2 blocks/set → 64 = 26 sets.

(B) The code snippet below accesses two arrays of doubles. Assuming i is stored in a register and
the cache starts cold, give the memory access pattern (read or write to which
elements/addresses)  and compute the miss rate.

#define SIZE 128

double src[SIZE]; // &src = 0x08000 (physical addr)

double dst[SIZE]; // &dst = 0x0E000 (physical addr)

for (int i = 0; i < SIZE; i += 1) {

dst[i] = src[i];

src[i] = i;

}

Per Iteration: Access 1: Access 2:                     Access 3:
(circle) → R / W to R / W to                       R / W to
(fill in) → src[i] dst[i] src[i]

src[i] and dst[i] map into the same set because their index
fields match. However, our cache is 2-way set associative,
so they do not conflict. Each block holds 32 B = 4 doubles,
so for the 4 iterations in the same cache block, we get
MMH|HHH|HHH|HHH for a miss rate of 2/12 = 1/6.

Code Miss Rate:

1/6

(C) For each of the proposed (independent) changes, draw ↑ for “increased”, ― for “no change”,
or ↓ for “decreased” to indicate the effect on the miss rate from Part B for the code above:

Use float instead _____↓____ Double the cache size _____―____



Half the associativity ____↑___ No-write allocate _____↑____

Using floats means we access each block twice as much (MR = 1/12). Doubling cache size  doubles
the number of sets, but src[i] and dst[i] still map to the same set. Direct-mapped  would cause src[i]
and dst[i] to generate conflict misses. No-write allocate means we don’t bring in the block for dst
into the cache on access 2, so future access 2s continue to be Misses.

(D) Assume it takes 160 ns to get a block of data from main memory. If our L1 data cache
has a hit  time of 5 ns and a miss rate of 5%, what is our average memory access time
(AMAT)?

AMAT = HT + MR×MP = 5 ns + 0.05 × 160 ns = 5 + 8 ns

13 ns

Question 3: Processes

(A) The following function prints out four numbers. In the following blanks, list three
possible  outcomes:

void concurrent(void) {

int n = 5;
if (fork()) {
n++;
if (fork()) {

n++;
wait();

}
printf("%d, ", n);
exit(0);

} else {
printf("%d, ", n);

}
printf("%d, ", n);
exit(0);
}

7 Possible Outcomes:

1) 5, 5, 6, 7,

2) 5, 5, 7, 6,

3) 5, 6, 5, 7,

4) 5, 6, 7, 5,

5) 6, 5, 5, 7,

6) 6, 5, 7, 5,

7) 6, 7, 5, 5,



(B) For the following examples of exception causes, write “S” for synchronous or “A” for
asynchronous from the perspective of the user process. [4 pt]

System call ______S______ Divide by zero _____S____

Segmentation fault _____S____ Key pressed ______A_____

Everything but a key press is caused by an assembly instruction within your program.

(C) Fill in the following blanks with “A” for always, “S” for sometimes, and “N” for never if
the  following would be different when context switching to a different process?

Process ID ___A__ Program ___S__ PTBR __A_ Condition Codes ____S___

Every process has a unique ID and its own page table, but could be running different
instances of  the same program. Each process has its own execution state (including the
condition codes), but  it is possible that the condition codes have the same values at the
instance we switch.

(D) Is the following statement True or False? Provide a brief justification: a single process
can  execute multiple programs simultaneously.

Circle one:       True / False
Justification: One process is dedicated to running one program at a time. The program
defines the instructions, initial memory state, etc. of the process, so two programs
can’t exist  within the same process at once.

Question 4: Virtual Memory

Our system has the following setup:
• 15-bit virtual addresses and 2 KiB of RAM with 256-byte pages
• A 4-entry fully-associative TLB with LRU replacement
• A PTE contains bits for valid (V), dirty (D), read (R), write (W), and execute (X)



(A) Compute the following values:

page offset width 8 bits # of TLB sets 1 set

# of virtual pages 27 pages minimum width of PTBR 11 bits

Page offset is logଶ256 = 8 bits wide. # of virtual pages is 2n-p = 27. The TLB is fully
associative, so only has 1 set. The page table lives in physical memory, so the PTBR must
hold  its physical address, which need to be at least 11 bits wide to address all 2 KiB of RAM.

(B) Assuming that the TLB is in the state shown (permission bits: 1 = allowed, 0 = disallowed),
give  example addresses that will fulfill the following scenarios:

TLBT PPN Valid D R W X

0x20 0xc 1 0 1 0 0

0x7f 0xa 1 0 1 1 0

0x7e 0xf 1 0 1 1 0

0x04 0xe 1 0 1 1 1

A value in %rip that causes a TLB Hit and no exception:

Want TLB entry with V=1, X=1 → VPN 0x04. Any address between 0x0400-0x04FF

A write address that causes a TLB Hit and segmentation fault:

Want TLB entry with V=1, W=0 → VPN 0x20. Any address between 0x2000-0x20FF

Find the desired entry in the TLB. Because the TLB is fully-associative, the TLB tag is exactly the
virtual page number (VPN). Any page offset within this page will access that TLB entry.

Question 5: Memory Allocation



1 #include <stdlib.h>
2 float pi = 3.14;
3
4 int main(int argc, char *argv[]) {
5   int year = 2019;
6   int* happy = malloc(sizeof(int*));
7   happy++;
8   free(happy);
9   return 0;
10 }

(A) Consider the C code shown above. Assume that the malloc call succeeds and happy and
year are stored in memory (not in a register). Fill in the following blanks with “<” or “>”
or “UNKNOWN” to compare the values returned by the following expressions just before
return 0.

&year _____>____ &main

happy _____<___ &happy

&pi ______<___ happy

(B) The code above has two memory-related errors. Use the line numbers in the code to
describe what the errors are and where they occur.

Error #1: On line 6 we are requesting more memory than we need. We should be requesting
size of int (4 bytes), not size of int* (8 bytes). Alternatively we could have meant to declare
happy to be of type int** (a pointer to a pointer to an int) so that we would have needed 8
bytes to hold a pointer to an int.
Error #2: On line 8 we are calling free on a pointer that was not the one returned to us by
malloc. In line 7 we are incrementing happy (a pointer to an int that was returned to us by
malloc).

(C) (Not related to code at top of page) Give one advantage that next fit placement policy has
over a first fit placement policy in an implicit free list implementation.

Next fit searches the list starting where the previous search finished. This should often be
faster than first fit because it avoids re-scanning unhelpful blocks. First fit always starts
searching at the beginning of the list. In an implicit free list this is particularly bad because the
“free” list actually contains all allocated blocks as well as free blocks. So starting from the
beginning of the list is likely to traverse many allocated blocks each time.

(D) List two reasons why it would be hard to write a garbage collector for the C



programming language.

Reason #1: Pointers in C can point to a location other than the beginning of a block of
memory on the heap.

Reason #2: In C you can “hide” pointers e.g. by casting them to longs.

Question 6: Java vs. C

This is an open-ended question, just make sure to avoid repeating the same point but worded
differently or listing the same point but worded in opposite ways for both questions.

(A) Describe two distinct ways or things that you think C does better than Java.
Possible Answer Topics: Pointer Manipulation, Memory Usage/Management, Compiles

Faster/ Runs Faster, Closer to Machine Code (Lower Level), Programmer has more direct control

(B) Describe two distinct ways or things that Java does better than C.

Possible Answer Topics: Safety (e.g. type casting, bounds checking, exception handling,
simpler code), Higher Level (less responsibility for the programmer), Data Structures (also OOP,
Classes), More Portable, References vs. Pointers


