
Section 10: Final Review
Autumn 2022



Final Exam Topics
● Arrays and Structs

○ alignment, fragmentation, buffer overflow

● Caching
○ locality, associativity, cache parameters and performance, AMAT

● Processes
○ fork, execv, exceptions, context switching, zombies

● Virtual Memory
○ paging, address translation, disk and swap space, protection and sharing

● Dynamic Memory Allocation
○ fragmentation, free lists (implicit, explicit, segregated), garbage collection, memory bugs

● C and Java



Arrays and Structs



Q1: Structs (A)
typedef struct {    

 char* title;   // title (e.g. "HW SW INTERFACE")     

 char dept[3];   // dept (e.g. "CSE") 

 short num;   // course number (e.g. 351)  

 int enrolled;   // students enrolled 

} course; 

                 K: 

              8 

               1

            2

               4

          Kmax = 8

title dept num enrolled

0 8 11 12 14 16 20



Q1: Structs (B)

title dept num enrolled

0 8 11 12 14 16 20

for (int i = 0; i < 52; ++i) {  

  ar[i] = i;  

}

Assume that an instance course c is allocated on the stack and an array char 
ar[] is  allocated 40 bytes below c (i.e. &ar + 0x28 == (char*)&c). Fill in the 
blanks below with  the new ASCII characters stored in c.dept after the 
following loop is executed. Hint: recall that  the values 0x30 to 0x39 
correspond to the ASCII characters '0' to '9'. 

     ar[0] ... ar
[39]

ar
[38]

ar
[37]

ar
[48]
‘0’

ar
[49]
‘1’

ar
[50]
‘2’



Caching



Q2: Caching (A)
We have 256 KiB of RAM and a 4-KiB L1 data cache that is 2-way set associative with 32-byte blocks  and random 
replacement, write-back, and write allocate policies. 

Physical Address:

256 KiB RAM → 218 B of Physical Memory

Physical address is 18 bits long

Cache Parameters:

C = 4 KiB = 212 B

K = 32 = 25 B

E = 2

S = 212/25/2 = 26 sets 

Tag bits Index bits Offset bits

7 6 5



Q2: Caching (B)
The code snippet below accesses two arrays of doubles. 
Assuming i is stored in a register and  the cache starts 
cold, give the memory access pattern (read or write to 
which elements/addresses)  and compute the miss rate.

#define SIZE 128  

double src[SIZE]; // &src = 0x08000 (physical 
addr)  

double dst[SIZE]; // &dst = 0x0E000 (physical 
addr)  

for (int i = 0; i < SIZE; i += 1) {  

  dst[i] = src[i];  

  src[i] = i;  

} 

1: Read src[i]
2: Write dst[i]

3: Write src[i]

&src = 0x08000 = 0b0010000|000000|00000

TIO = 0x10 | 0x00 | 0x00|
&dst = 0x0E000 = 0b0011100|000000|00000

TIO = 0x1C | 0x00 | 0x00|

src[i] and dst[i] will always map to the same set & 
offset but will have different tags! 

It’s okay though: the cache is 2-way associative
Each block is 32B, so it can hold 4 doubles

Cache Set 0

src[0] src[1] src[2] src[3]

dst[0] dst[1] dst[2] dst[3]

Block 0

Block 1

1. RM

2. WM

3. WH

4. RH

6. WH
5. WH

7. RH

9. WH
8. WH

10. RH

12. WH
11. WH

Total per set:  10 hits, 2 misses
2/12 miss rate



Q2: Caching (C)
For each of the proposed (independent) changes, draw ↑ for “increased”, ― for “no change”,   or  ↓ for “decreased” to 
indicate the effect on the miss rate from Part B for the code above: 

Use float instead:

Double the cache size:

Half the associativity:

No-write allocate:

                                              ↓ (more array elements can fit in a block, so there will be more hits)

                                             ― (we didn’t have any capacity problems)

                                              ↑ (a direct-mapped cache would cause conflict misses between src[i] and dst[i])

                                              ↑ (dst[i] would never be pulled into the cache, so writes into dst[i] will always be misses)



Q2: Caching (D)
Assume it takes 160 ns to get a block of data from main memory. If our L1 data cache has a hit  time of 5 ns and a 
miss rate of 5%, what is our average memory access time (AMAT)? 

MP = 160ns

HT = 5ns

MR = 5% = 0.05

AMAT = HT + MR×MP 

             = 5 ns + 0.05 × 160 ns = 5 + 8 ns 



Processes



Q3: Processes (A)
void concurrent(void) {

 int n = 5;  
 if (fork()) {  
   n++;  
   if (fork()) {   
      n++;  
      wait();  
   }  
   printf("%d, ", n);  
   exit(0);  
 } else {  
   printf("%d, ", n);   
 }  
 printf("%d, ", n);     
 exit(0);  
} 

7 Possible Outcomes:

1) 5, 5, 6, 7,   

2) 5, 5, 7, 6,   

3) 5, 6, 5, 7,   

4) 5, 6, 7, 5,   

5) 6, 5, 5, 7,   

6) 6, 5, 7, 5,   

7) 6, 7, 5, 5,



Q3: Processes (B)
For the following examples of exception causes, write “S” for synchronous or “A” for asynchronous from the perspective 
of the user process. (See Ed lesson RD20: Processes I for review)

Synchronous exceptions are caused by executing an instruction in the program
Asynchronous exceptions are caused by events external to the processor (i.e. interrupts)

System call ______S______      Divide by zero _____S____

Segmentation fault _____S____   Key pressed ______A_____

Everything but a key press is caused by an assembly instruction within your program.  



Process ID:

Program:

PTBR:

Condition Codes:

Q3: Processes (C)
Fill in the following blanks with “A” for always, “S” for sometimes, and “N” for never if the  following would be different 
when context switching to a different process? (See Ed lesson RD20: Processes I for review)

                                   A (each processes always has their own unique process IDs (PIDs))

                                   S (different processes might be instances of the same program)

                                   A (each process always has their own unique page table)

                                   S  (different processes might have the same condition codes coincidentally)



Q3: Processes (D)
Is the following statement True or False? Provide a brief justification: 

“a single process can execute multiple programs simultaneously”

False.
One process is dedicated to running one program at a time. The program  defines the instructions, 
initial memory state, etc. of the process, so two programs can’t exist within the same process at once.



Virtual Memory



Q4: Virtual Memory (A)
Our system has the following setup: 
● 15-bit virtual addresses and 2 KiB of RAM with 256-byte pages  
● A 4-entry fully-associative TLB with LRU replacement  
● A PTE contains bits for valid (V), dirty (D), read (R), write (W), and execute (X)

Compute the following values: 

Page Offset Width: 

# of TLB Sets:

# of Virtual Pages:

Minimum Width of PTBR:

                                                    8 bits (a page is 256B = 28 B)

                                                   1 set (the TLB is fully-associative, so everything goes into the same set)

                                                   27 pages (15-bit VA → 215 B in virtual address space → 215 virtual bytes/28 B in a page = 27 virtual pages

                                                   11 bits (2 KiB RAM → 211 B in physical address space → all physical address must be 11 bits wide)



Q4: Virtual Memory (B)
Assuming that the TLB is in the state shown 
(permission bits: 1 = allowed, 0 = disallowed), give  
example addresses that will fulfill the following 
scenarios: 

A value in %rip that causes a TLB Hit and no exception:

A write address that causes a TLB Hit and segmentation fault:

%rip is instruction pointer, need permission to execute code.

Want TLB entry with V=1, X=1 → Want VPN/TLB Tag of 0x04

So any address between 0x0400-0x04FF will work

Want TLB entry with V=1, W=0 → Want VPN/TLB Tag of 0x20
So any address between 0x2000-0x20FF will work

15-bit virtual addresses

VPN | Page Offset → 7 bits | 8 bits

TLB Tag | TLB Index | Page Offset → 7 bits | 0 bits | 8 bits



Dynamic Memory Allocation



Q5: Memory Allocation (A)
Consider the C code shown above. Assume that the malloc call succeeds 
and happy and year are stored in memory (not in a register). 

Fill in the following blanks with “<” or “>” or “UNKNOWN” to compare 
the values returned by the following expressions just before  return 0. 

1 #include <stdlib.h> 
2 float pi = 3.14; 
3 
4 int main(int argc, char *argv[]) { 
5   int year = 2019; 
6   int* happy = malloc(sizeof(int*)); 
7   happy++; 
8   free(happy); 
9   return 0; 
10} 

&year > &main 

&year would return an address in the stack segment
&main would return an address in the instructions segment

happy  < &happy

happy would return an address in the heap segment
&happy would return an address in the stack segment

&pi < happy

&pi would return an address in the static data segment
happy would return an address in the heap segment



Q5: Memory Allocation (B)
 The code above has two memory-related errors. Use the line 
numbers in the code to describe what the errors are and where they 
occur. 

1 #include <stdlib.h> 
2 float pi = 3.14; 
3 
4 int main(int argc, char *argv[]) { 
5   int year = 2019; 
6   int* happy = malloc(sizeof(int*)); 
7   happy++; 
8   free(happy); 
9   return 0; 
10} Error #1:  On line 6 we are requesting more memory than we need. 

We should be requesting size of int (4 bytes), not size of int* (8 
bytes). Alternatively we could have meant to declare happy to be of 
type int** (a pointer to a pointer to an int) so that we would have 
needed 8 bytes to hold a pointer to an int.

Error #2:  On line 8 we are calling free on a pointer that was not the 
one returned to us by malloc. In line 7 we are incrementing happy (a 
pointer to an int that was returned to us by malloc).



Q5: Memory Allocation (C)
Give one advantage that next fit placement policy has over a first fit placement policy in an implicit free list implementation. 

Next fit searches the list starting where the previous search finished. This should often be faster 
than first fit because it avoids re-scanning unhelpful blocks.

First fit always starts searching at the beginning of the list. In an implicit free list this is 
particularly bad because the “free” list actually contains all allocated blocks as well as free 
blocks. So starting from the beginning of the list is likely to traverse many allocated blocks each 
time.



Q5: Memory Allocation (D)
List two reasons why it would be hard to write a garbage collector for the C  programming language. 

Reason #1:  Pointers in C can point to a location other than the 
beginning of a block of memory on the heap.

Reason #2:  In C you can “hide” pointers e.g. by casting them to longs.



Java and C



Q6: Java vs. C
This is an open-ended question, just make sure to avoid repeating the same point but worded differently or listing the same 
point but worded in opposite ways for both questions.

(A) Describe two distinct ways or things that you think C does better than Java.

(B) Describe two distinct ways or things that Java does better than C.

Possible Answer Topics: Pointer Manipulation, Memory Usage/Management, Compiles Faster/ 
Runs Faster, Closer to Machine Code (Lower Level), Programmer has more direct control

Possible Answer Topics: Safety (e.g. type casting, bounds checking, exception handling, simpler code), 
Higher Level (less responsibility for the programmer), Data Structures (also OOP, Classes), More 
Portable, References vs. Pointers



Q7: Java Classes (A)
The vtable for CPU is shown below. Annotate the 
diagram with the changes that we would need to 
make for the vtable of MultiCoreCPU. 

class CPU {
   float clockSpeed;
   int cacheSize;
   int cacheAssoc; 

   int getCores() {
      return 1; 
   }
}

class MultiCoreCPU extends CPU {
   int numberOfCores; 
   float[] coreSpeeds = new float [16]; 

   int getCores() { 
      return numberOfCores;
   } 

   float[] getCoreSpeeds() { 
      return coreSpeeds; 
   } 
}

constructor

CPU vtable

getCores

<code for 
CPU 

constructor>

<code for 
CPU.getCores>

constructor getCores getCoreSpeeds

MultiCoreCPU vtable

<code for 
MutliCore

CPU.
getCores>

<code for 
MutliCoreCPU.

getCoreSpeeds>



Q7: Java Classes (B)
You may assume that the alignment for this JVM 
implementation is the same as C on x86-64, and that fields 
are stored in memory in the order that they are declared. 
(see Lecture 27: Java and C)
How much space does an instance of CPU take up?

class CPU {
   float clockSpeed;
   int cacheSize;
   int cacheAssoc; 

   int getCores() {
      return 1; 
   }
}

class MultiCoreCPU extends CPU {
   int numberOfCores; 
   float[] coreSpeeds = new float [16]; 

   int getCores() { 
      return numberOfCores;
   } 

   float[] getCoreSpeeds() { 
      return coreSpeeds; 
   } 
}

header 8B

vptr 8B

float clockSpeed 4B

int cacheSize 4B

int cacheAssoc 4B

padding 4B

32B



Q7: Java Classes (C)
How much space does an instance of MultiCoreCPU take up?

class CPU {
   float clockSpeed;
   int cacheSize;
   int cacheAssoc; 

   int getCores() {
      return 1; 
   }
}

class MultiCoreCPU extends CPU {
   int numberOfCores; 
   float[] coreSpeeds = new float [16]; 

   int getCores() { 
      return numberOfCores;
   } 

   float[] getCoreSpeeds() { 
      return coreSpeeds; 
   } 
}

header 8B

vptr 8B

float clockSpeed 4B

int cacheSize 4B

int cacheAssoc 4B

int numberOfCores 4B

40B

float[] coreSpeeds

These 8 bytes for coreSpeeds are a 
pointer to the array object

8B



Q7: Java Classes (D)
Give an example of something that is allowed in C, but not in Java, because it would prevent the garbage collector from 
working properly. 

Possible examples:
● pointers to middle of structs/objects
● casting pointers to other types
● being able to read a pointer and modify the address it points to
● …


