
CSE 351 Section 8
Caches & Processes

Autumn 2021

Administrivia
● Homework 19

○ Due Friday, Nov 18th

● Homework 21
○ Due Monday, Nov 21st

● Lab 4
○ Due Monday, Nov 28th (After Thanksgiving break)

2

Cache Review

3

Associativity
● Caches are E-way associative

○ E = associativity = # of blocks per set = # of ways to fit blocks into a single set

● The number of sets = C/K/E
○ C: cache size

○ K: block size

○ E: associativity

Cache Review

Replacement policy: Generally least recently used (LRU) or “not most recently
used”

Cache cheatsheet:
https://edstem.org/us/courses/7371/lessons/19530/slides/141929 5

Symbol Meaning

K Block Size

C Cache Size

E Associativity

m Address Width

k # Offset Bits = log2(K)

s # Index Bits = log2(C / K / E)

t # Tag Bits = m - k - s

Cache Organization Review
Symbol Meaning

K Block Size

C Cache Size

E Associativity

S # Sets = (C / K) / E

m Address Width

k # Offset Bits = log2(K)

s # Index Bits = log2(S)

t # Tag Bits = m - k - s

1) Search the set indicated by the index field.
2) Check every line in the set for desired block:

cache hit if valid bit = 1 and matching tag field.
3) If cache miss, place into invalid line or

replace least recently used (LRU) line.
4) Read data starting from the offset.

Dealing with Cache Misses
● Compulsory / Cold

○ Occurs on the first access to a particular cache block.
○ Parameter fix: Increase the block size.

● Conflict
○ Occurs when the cache is large enough but too many blocks map to the same

set.
○ Parameter fix: Increase associativity (none in fully-associative caches).

● Capacity
○ Occurs when the set of active cache blocks (the working set) is larger than the

cache.
○ Parameter fix: Increase cache size.

7

Write Review
We’ve seen a lot of cache reads, but what about writes?

The cache typically stores a copy of the contents of memory (think about the
memory hierarchy).

How do we know if and when we copy from the cache back to memory?

Let’s look closer at write policies:

8

Write Review: Hit!
● Write Through

○ Write to “next level” directly

● Write Back
○ Defer writing until cache line we wrote to is evicted

○ We need to keep track of whether line has been modified

■ This requires we store additional information: the dirty bit

■ We only write to memory if our block is replaced and the dirty bit was set

9

Memory

Write Through Write Back

Memory

Cache

Wait till evicted

D

D

Cache

Write Review: Miss!
● Write Allocate (fetch on write)

○ Load data into cache first (akin to a read)

○ Then write to cache

○ Good for locality if adjacent writes or reads

follow

● No-write Allocate (write around)
○ Write to “next level” directly

We will usually see write-back, write allocate

10

Memory

Cache

Write Allocate No-write Allocate

Memory

1

2

Memory

Cache

Write-back, write allocate

1

2

D

3. Wait till evicted

Cache Exam Problem

11

Practice Exam Problem (a)
We have a 64 KiB address space. The cache is a 1 KiB,
direct-mapped cache using 256-byte blocks and write-back
and write-allocate policies.

What is the TIO address breakdown?

64 KiB = 216 B; 1 KiB = 210 B; 256 B = 28 B

12

6 2 8
Tag Bits Index Bits Offset Bits

Practice Exam Problem (b)
During some part of a running program, the cache’s management bits are in
the following state. Four options for the next two memory accesses are given
(R = read, W = write). Choose the option that results in data from the cache
being written to memory.

13

● When will data from the cache be written to memory?
○ a cache line is dirty and gets evicted

● You’ll need to do a TIO breakdown for all the addresses

Practice Exam Problem (b)
Will we write to memory?

R 0x4C00, W 0x5C00
Set Valid Dirty Tag

00 0 0 1000 01
01 1 1 0101 01
10 1 0 1110 00
11 0 0 0000 11

0x4C00 → 0100 1100 0000 0000

0x5C00 → 0101 1100 0000 0000
READ 0x4C00
Did we hit?
Is set 00 dirty?

14

6 2 8
Tag Bits Index Bits Offset Bits

Practice Exam Problem (b)
Set Valid Dirty Tag

00 1 0 0100 11
01 1 1 0101 01
10 1 0 1110 00
11 0 0 0000 11

WRITE 0x5C00
Did we hit?
Is set 00 dirty?

15

Will we write to memory?
R 0x4C00, W 0x5C00

0x4C00 → 0100 1100 0000 0000

0x5C00 → 0101 1100 0000 0000

6 2 8
Tag Bits Index Bits Offset Bits

Practice Exam Problem (b)
Set Valid Dirty Tag

00 1 0 0101 11
01 1 1 0101 01
10 1 0 1110 00
11 0 0 0000 11

WRITE 0x5C00
Load 0x5C00 first

16

Will we write to memory?
R 0x4C00, W 0x5C00

0x4C00 → 0100 1100 0000 0000

0x5C00 → 0101 1100 0000 0000

6 2 8
Tag Bits Index Bits Offset Bits

Practice Exam Problem (b)
Set Valid Dirty Tag

00 1 1 0101 11
01 1 1 0101 01
10 1 0 1110 00
11 0 0 0000 11

Dirty bit set, but
no memory write
has occurred

17

Will we write to memory?
R 0x4C00, W 0x5C00

0x4C00 → 0100 1100 0000 0000

0x5C00 → 0101 1100 0000 0000

6 2 8
Tag Bits Index Bits Offset Bits

You try!
Work on the rest of (b).

We will reconvene to discuss the answers!

18

Tag OffsetIndex

Practice Exam Problem (b)
Will we write to memory?

W 0x5500, W 0x7A00
Line Valid Dirty Tag

00 0 0 1000 01
01 1 1 0101 01
10 1 0 1110 00
11 0 0 0000 11

0x5500 → 0101 0101 0000 0000

0x7A00 → 0111 1010 0000 0000

● First write is a hit; nothing is evicted.
● Second write evicts old data in set 10, but nothing is written to memory

as the dirty bit was not set.

19

Practice Exam Problem (b)
Will we write to memory?

W 0x2300, R 0x0F00
Line Valid Dirty Tag

00 0 0 1000 01
01 1 1 0101 01
10 1 0 1110 00
11 0 0 0000 11

0x2300 → 0010 0011 0000 0000

0x0F00 → 0000 1111 0000 0000

● The write evicts line 3, loads it in, and sets the dirty bit.
● The read evicts line 3, but the dirty bit was set, so we must write the

changed value back to memory before we perform the read!

20

Tag OffsetIndex

Practice Exam Problem (b)
Will we write to memory?

R 0x3000, R 0x3000
Line Valid Dirty Tag

00 0 0 1000 01
01 1 1 0101 01
10 1 0 1110 00
11 0 0 0000 11

0x3000 → 0011 0000 0000 0000

● The first read evicts line 0, but it wasn’t dirty so we don’t write back to
memory.

● The second read is a read hit. No writing occurs.

21

Tag OffsetIndex

Practice Exam Problem (c)
Choose LEAP to produce a hit
rate of 15/16.

Hint: |= is two accesses

#define ARRAY_SIZE 8192
char string[ARRAY_SIZE]; // &string = 0x8000
for (i = 0; i < ARRAY_SIZE; i += LEAP) {
 string[i] |= 0x20; // to lower
}

● Block size is 256B, want 16 accesses total with one miss
● |= is two accesses, so we want (256 / 16) / 2 = 8 loop iterations per block

(note the access pattern)
● To get 8 iterations per block, LEAP must be 256 / 8 = 32

22

Practice Exam Problem (d)
If LEAP is 64, how could we
increase the hit rate?

#define ARRAY_SIZE 8192
char string[ARRAY_SIZE]; // &string = 0x8000
for (i = 0; i < ARRAY_SIZE; i += LEAP) {
 string[i] |= 0x20; // to lower
}

Bigger Blocks Bigger Cache Add L2 Cache Increase LEAP

This is the only option which reduces the miss rate, as it
causes more to be loaded on each miss.

23

Practice Exam Problem (e)
What are the three kinds of
cache misses, and which one
is occurring here?

#define ARRAY_SIZE 8192
char string[ARRAY_SIZE]; // &string = 0x8000
for (i = 0; i < ARRAY_SIZE; i += LEAP) {
 string[i] |= 0x20; // to lower
}

Compulsory Conflict Capacity

We miss because we are loading something new, not because of the size
of our working set or conflicts.

24

Benedict Cumbercache
Given the following sequence of access results (addresses are given in
decimal) on a cold/empty cache of size 16 bytes, what can we deduce about its
properties? Assume an LRU replacement policy.

● (0, Miss)
● (8, Miss)
● (0, Hit)
● (16, Miss)
● (8, Miss)

25

Benedict Cumbercache
(0, M) (8, M) (0, H) (16, M) (8, M)

What can we say about the block size?

The block size must be no more than 8, because the initial
miss at 0 will load in the aligned block from addresses (0)

to (size - 1), but we miss when accessing 8 afterwards.

26

Benedict Cumbercache
(0, M) (8, M) (0, H) (16, M) (8, M)

If block size is 8, what about associativity?

DIRECT-MAPPED?

1st access misses (loads in block 0 [0 - 7])
2nd access misses (loads in block 1 [8 - 15])
3rd access hits (0 is already loaded in)
4th access misses (evicts block 0, loads in [16 - 23])
5th access HITS (8 is still loaded in)

So we can’t have direct mapped!

27

Benedict Cumbercache
(0, M) (8, M) (0, H) (16, M) (8, M)

If block size is 8, what about associativity?

2-WAY ASSOCIATIVE?

1st access misses (loads in block 0 [0 - 7])
2nd access misses (loads in block 1 [8 - 15])
3rd access hits (0 is already loaded in)
4th access misses (evicts LRU block 1, loads in [16 - 23])
5th access misses (4th access evicted 8)

The cache could be 2-way associative!

28

Benedict Cumbercache
(0, M) (8, M) (0, H) (16, M) (8, M)

If block size is 8, what about associativity?

4-WAY ASSOCIATIVE?

The cache size is 16 B and the block size is 8 B, so we
can’t have a 4-way associative cache as one set would be

bigger than the entire capacity!

29

Processes

30

What is a Process?
Processes are an abstraction which represent an instance of a running
program. They are distinct from a “program” or a “processor.”

Exceptional control flow allows many processes to be run on a single
processor at (what appears to be) the same time (concurrently).
Exceptions include interrupts, traps, faults, and aborts.

When we switch running processes we perform a context switch and
must preserve the execution context so we can restore the program
state later!

31

It’s Forkin’ Time
We can create a clone of our currently running process with fork().
It’s a little special because it has two return values: 0 to the child, and
the child’s PID (process ID) to the parent. This allows our code to
distinguish the parent from the child.

We’ll focus on fork today, but there are many system calls to manage
processes:
● exec*() - family of operations to replace current process
● getpid()
● exit()
● wait(), waitpid() 32

Multiple Processes
Can we predict the execution order of processes? Not really!

The OS will switch between running processes. Each process runs its
instructions in order, but users won’t be able to predict execution
order of different processes.

Most machines these days have multiple processors… but we’ll stick
with just one for now!

33

Exercise
What are all four possible

outputs for this code?

int x = 7;
if(fork()) {
 x++;
 printf(" %d ", x);
 fork();
 x++;
 printf(" %d ", x);
} else {
 printf(" %d ", x);
}

34

Process Graphs
We can trace this program’s execution with a diagram:

int x = 7;
if(fork()) {
 x++;
 printf(" %d ", x);
 fork();
 x++;
 printf(" %d ", x);
} else {
 printf(" %d ", x);
}

x = 7

35

Process Graphs
We can trace this program’s execution with a diagram:

int x = 7;
if(fork()) {
 x++;
 printf(" %d ", x);
 fork();
 x++;
 printf(" %d ", x);
} else {
 printf(" %d ", x);
}

x = 7

36

Process Graphs
We can trace this program’s execution with a diagram:

int x = 7;
if(fork()) {
 x++;
 printf(" %d ", x);
 fork();
 x++;
 printf(" %d ", x);
} else {
 printf(" %d ", x);
}

x = 7

x = 8 x = 7

fork returned 0
to child

fork returned
(PID) to parent

37

Process Graphs
We can trace this program’s execution with a diagram:

int x = 7;
if(fork()) {
 x++;
 printf(" %d ", x);
 fork();
 x++;
 printf(" %d ", x);
} else {
 printf(" %d ", x);
}

x = 7

x = 8

“7”

x = 7

“8”

38

Process Graphs
We can trace this program’s execution with a diagram:

int x = 7;
if(fork()) {
 x++;
 printf(" %d ", x);
 fork();
 x++;
 printf(" %d ", x);
} else {
 printf(" %d ", x);
}

x = 7

x = 8

“7”

x = 7

“8”

39

Process Graphs
We can trace this program’s execution with a diagram:

int x = 7;
if(fork()) {
 x++;
 printf(" %d ", x);
 fork();
 x++;
 printf(" %d ", x);
} else {
 printf(" %d ", x);
}

x = 7

x = 8

“7”

x = 7

“8”

x = 9 x = 9

40

Process Graphs
We can trace this program’s execution with a diagram:

int x = 7;
if(fork()) {
 x++;
 printf(" %d ", x);
 fork();
 x++;
 printf(" %d ", x);
} else {
 printf(" %d ", x);
}

x = 7

x = 8

“8”

x = 9 x = 9

“9” “9”

41

“7”

x = 7

Process Graphs
We can trace this program’s execution with a diagram:

int x = 7;
if(fork()) {
 x++;
 printf(" %d ", x);
 fork();
 x++;
 printf(" %d ", x);
} else {
 printf(" %d ", x);
}

x = 7

x = 8

“7”

x = 7

“8”

x = 9 x = 9

“9” “9”

What are the
four possible
outputs? 7899

8799
8979
8997

42

Process Graphs
We can trace this program’s execution with a diagram:

int x = 7;
if(fork()) {
 x++;
 printf(" %d ", x);
 fork();
 x++;
 printf(" %d ", x);
} else {
 printf(" %d ", x);
}

x = 7

x = 8

“7”

x = 7

“8”

x = 9 x = 9

“9” “9”

What are the
four possible
outputs? 7899

8799
8979
8997

43

Process Graphs
We can trace this program’s execution with a diagram:

int x = 7;
if(fork()) {
 x++;
 printf(" %d ", x);
 fork();
 x++;
 printf(" %d ", x);
} else {
 printf(" %d ", x);
}

x = 7

x = 8

“7”

x = 7
“8”

x = 9 x = 9

“9” “9”

What are the
four possible
outputs? 7899

8799
8979
8997

44

Process Graphs
We can trace this program’s execution with a diagram:

int x = 7;
if(fork()) {
 x++;
 printf(" %d ", x);
 fork();
 x++;
 printf(" %d ", x);
} else {
 printf(" %d ", x);
}

x = 7

x = 8

“7”

x = 7
“8”

x = 9

x = 9

“9”

“9”

What are the
four possible
outputs? 7899

8799
8979
8997

45

Process Graphs
We can trace this program’s execution with a diagram:

int x = 7;
if(fork()) {
 x++;
 printf(" %d ", x);
 fork();
 x++;
 printf(" %d ", x);
} else {
 printf(" %d ", x);
}

x = 7

x = 8

“7”

x = 7“8”

x = 9 x = 9
“9” “9”

What are the
four possible
outputs? 7899

8799
8979
8997

46

Cache Simulator

Cache Simulator!

Link:
https://courses.cs.washington.edu/courses/cse351/cachesim/

The cache simulator can be a helpful tool for reasoning through cache
problems and mechanisms, particularly on homework and in lab 4.

That’s All, Folks!
Thanks for attending section! Feel free to stick around for a bit if you
have quick questions (otherwise post on Ed or go to OH).

See you all next week and good luck on lab 4.

49

