
CSE 351 Section 7
Caches

Administrivia
● Lab 3

○ Due Friday, November 11
● Homework 17

○ Due Wednesday, November 16

Caches

Cache Review
The cache stores a subset of main memory with much faster access time! It is
located much closer to the processor, often on the same chip. When we
access memory, we check the cache(s) first.

Processor Cache Main
Memory

I want data at address F

Cache Review
If the data we want isn’t in the cache, that’s a cache miss. We have to go to
main memory, and then we’ll save that data in the cache. By transferring
entire blocks of data at a time, we take advantage of spatial locality.

Processor Cache Main
Memory

I don’t have it I do!I want data at address F

(Block of data
containing F)

Cache Review
If the data we want is in the cache and valid, that’s a cache hit.

We don’t go to memory, which saves us a lot of time!

Processor Cache Main
Memory

I have it!Access data at F again

(Data at F)

Cache Organization Tag Block Data

● Caches have “slots” that each store blocks
containing Block Size bytes of consecutive data.

Cache Organization Tag Block Data

● Caches have “slots” that each store blocks
containing Block Size bytes of consecutive data.

● The Associativity is how many slots we group
together in each set.

se
ts

 o
f 2

 b
lo

ck
s

Cache Organization Tag Block Data

● Caches have “slots” that each store blocks
containing Block Size bytes of consecutive data.

● The total program data held in the cache
(i.e., the sum of all blocks) gives the Cache Size.

● The Associativity is how many slots we group
together in each set.

Analogy:

Cache Organization

C
ac

he
 In

de
x

Tag Block Data

● Caches have “slots” that each store blocks
containing Block Size bytes of consecutive data.

● The total program data held in the cache
(i.e., the sum of all blocks) gives the Cache Size.

Accessing the Cache
● Each set is given a unique index encoding. Every address will map to a

predetermined index; we will only search this set.

0

1
● The Associativity is how many slots we group

together in each set.

Cache Organization

C
ac

he
 In

de
x

Tag Block Data

● Caches have “slots” that each store blocks
containing Block Size bytes of consecutive data.

● The total program data held in the cache
(i.e., the sum of all blocks) gives the Cache Size.

Accessing the Cache
● Each set is given a unique index encoding. Every address will map to a

predetermined index; we will only search this set.

● Each block that maps to the same set can be uniquely identified by its tag.
We check for a tag match with each block in the set.

0

1
● The Associativity is how many slots we group

together in each set.

Cache Organization

Byte Offset

C
ac

he
 In

de
x

Tag Block Data

0 1 2 3

● The data’s starting position is given within the block by the offset byte
numbering.

● Caches have “slots” that each store blocks
containing Block Size bytes of consecutive data.

● The total program data held in the cache
(i.e., the sum of all blocks) gives the Cache Size.

Accessing the Cache
● Each set is given a unique index encoding. Every address will map to a

predetermined index; we will only search this set.

● Each block that maps to the same set can be uniquely identified by its tag.
We check for a tag match with each block in the set.

0

1
● The Associativity is how many slots we group

together in each set.

Cache Parameters
Symbol Meaning

K Block Size

C Cache Size

E Associativity

S # Sets = (C / K) / E

m Address Width

k # Offset Bits = log2(K)

s # Index Bits = log2(S)

t # Tag Bits = m - k - s

Tag Block Data

● Each block contains 4 bytes,
so K = 4 bytes.

Byte Offset
0 1 2 3

Example Cache

Cache Parameters
Symbol Meaning

K Block Size

C Cache Size

E Associativity

S # Sets = (C / K) / E

m Address Width

k # Offset Bits = log2(K)

s # Index Bits = log2(S)

t # Tag Bits = m - k - s

Byte Offset

Tag Block Data

00 01 10 11

● Each block contains 4 bytes,
so K = 4 bytes.
○ To label each byte, we need

k = log2(K) = 2 bits.

Cache Parameters
Symbol Meaning

K Block Size

C Cache Size

E Associativity

S # Sets = (C / K) / E

m Address Width

k # Offset Bits = log2(K)

s # Index Bits = log2(S)

t # Tag Bits = m - k - s

Byte Offset

Tag Block Data

00 01 10 11

● Each block contains 4 bytes,
so K = 4 bytes.
○ To label each byte, we need

k = log2(K) = 2 bits.

● The cache size is (bytes in a
block) * (number of blocks),
so C = K * 8 = 32 bytes.

Cache Parameters
Symbol Meaning

K Block Size

C Cache Size

E Associativity

S # Sets = (C / K) / E

m Address Width

k # Offset Bits = log2(K)

s # Index Bits = log2(S)

t # Tag Bits = m - k - s

Byte Offset

Tag Block Data

00 01 10 11

● Each block contains 4 bytes,
so K = 4 bytes.
○ To label each byte, we need

k = log2(K) = 2 bits.

● The cache size is (bytes in a
block) * (number of blocks),
so C = K * 8 = 32 bytes.

● Assuming Direct-Mapped,
E = 1 and S = (C/K)/E = 8 sets.

C
ac

he
 In

de
x

0

1

2

3

4

5

6

7

Direct-Mapped

Cache Parameters
Symbol Meaning

K Block Size

C Cache Size

E Associativity

S # Sets = (C / K) / E

m Address Width

k # Offset Bits = log2(K)

s # Index Bits = log2(S)

t # Tag Bits = m - k - s

Byte Offset

C
ac

he
 In

de
x

Tag Block Data

000

001

010

011

100

101

110

111

00 01 10 11

● Each block contains 4 bytes,
so K = 4 bytes.
○ To label each byte, we need

k = log2(K) = 2 bits.

● The cache size is (bytes in a
block) * (number of blocks),
so C = K * 8 = 32 bytes.

● Assuming Direct-Mapped,
E = 1 and S = (C/K)/E = 8 sets.
○ To label each slot, we need s

= log2(S) = 3 bits.

Direct-Mapped

Cache Parameters
Symbol Meaning

K Block Size

C Cache Size

E Associativity

S # Sets = (C / K) / E

m Address Width

k # Offset Bits = log2(K)

s # Index Bits = log2(S)

t # Tag Bits = m - k - s

Byte Offset

C
ac

he
 In

de
x

Tag Block Data

00 01 10 11

● Each block contains 4 bytes,
so K = 4 bytes.
○ To label each byte, we need

k = log2(K) = 2 bits.

● The cache size is (bytes in a
block) * (number of blocks),
so C = K * 8 = 32 bytes.

● Assuming 2-way Set Assoc,
E = 2 and S = (C/K)/E = 4 sets.

0

1

2

3

2-way Set Assoc

Cache Parameters
Symbol Meaning

K Block Size

C Cache Size

E Associativity

S # Sets = (C / K) / E

m Address Width

k # Offset Bits = log2(K)

s # Index Bits = log2(S)

t # Tag Bits = m - k - s

Byte Offset

C
ac

he
 In

de
x

Tag Block Data

00 01 10 11

● Each block contains 4 bytes,
so K = 4 bytes.
○ To label each byte, we need

k = log2(K) = 2 bits.

● The cache size is (bytes in a
block) * (number of blocks),
so C = K * 8 = 32 bytes.

● Assuming 2-way Set Assoc,
E = 2 and S = (C/K)/E = 4 sets.
○ To label each slot, we need

s = log2(S) = 2 bits.

00

01

10

11

2-way Set Assoc

Cache Parameters
Symbol Meaning

K Block Size

C Cache Size

E Associativity

S # Sets = (C / K) / E

m Address Width

k # Offset Bits = log2(K)

s # Index Bits = log2(S)

t # Tag Bits = m - k - s

Byte Offset

C
ac

he
 In

de
x

Tag Block Data

00 01 10 11

● Each block contains 4 bytes,
so K = 4 bytes.
○ To label each byte, we need

k = log2(K) = 2 bits.

● The cache size is (bytes in a
block) * (number of blocks),
so C = K * 8 = 32 bytes.

● Assuming Fully Associative,
E = 8 and S = (C/K)/E = 1 set.

0

Fully Associative

Cache Parameters
Symbol Meaning

K Block Size

C Cache Size

E Associativity

S # Sets = (C / K) / E

m Address Width

k # Offset Bits = log2(K)

s # Index Bits = log2(S)

t # Tag Bits = m - k - s

Byte Offset

C
ac

he
 In

de
x

Tag Block Data

00 01 10 11

● Each block contains 4 bytes,
so K = 4 bytes.
○ To label each byte, we need

k = log2(K) = 2 bits.

● The cache size is (bytes in a
block) * (number of blocks),
so C = K * 8 = 32 bytes.

● Assuming Fully Associative,
E = 8 and S = (C/K)/E = 1 set.
○ To label each slot, we need

s = log2(S) = 0 bits.

n/a

Fully Associative

Exercises

Example
64 B capacity cache, 4 B block size, direct-mapped,
12 bit address length.

What’s the TIO address breakdown?

● #bits for offset:

● #bits for index:

● #bits for tag:

Example
Read 1 byte from address 0x024

1. Translate to Binary:
a. 0x024 =

2. Split into TIO
a. Tag =
b. Index =
c. Offset =

Locality & Code Analysis

25

Temporal Locality
If your program used some data recently, it will likely use it again in the near
future.

● Examples: Loops
○ Variables are likely be accessed multiple

times.
○ Instructions are stored in memory too!

Loops iterate over the same set of
instructions in a short span of time.

char val = 0;

for (int i = 0; i < 8; i++)
val += a[i];

for (i = 0; i < 8; i++)
val ^= a[i];

● Your Goal: Make sure the data doesn’t get
kicked out of the cache in-between accesses.

Spatial Locality
If your program used some data recently, it will likely use nearby data in
memory in the near future.

● Examples: char val = 0;

for (int i = 0; i < 8; i++)
val += a[i];

for (i = 0; i < 8; i++)
val ^= a[i];

... ... a[0] a[1] a[2] a[3] a[4] a[5] a[6] a[7]

Sample array cut into two cache blocks in memory, … is mystery data!

○ Arrays place neighboring elements in
consecutive chunks of memory.

○ Machine code for sequential instructions
are placed next to each other in memory.

Spatial Locality
If your program used some data recently, it will likely use nearby data in
memory in the near future.

● Your Goal: Use small strides/leaps when
traversing data.

char val = 0;

for (int i = 0; i < 8; i++)
val += a[i];

for (i = 0; i < 8; i++)
val ^= a[i];

... ... a[0] a[1] a[2] a[3] a[4] a[5] a[6] a[7]

Sample array cut into two cache blocks in memory, … is mystery data!

○ Notice that when the code accesses a[i], it
will next access a[i+1], which is nearby!!

○ Array data can span multiple blocks, so
even with stride-1, there will still be cache
misses.

Miss Rate
The cache is mostly invisible to programmers. But we can still make some
optimizations by keeping it in mind!

The miss rate is the ratio of cache misses to total memory accesses. If we can
analyze when cache misses occur (usually by considering locality), we may be
able to make our code more cache-friendly and improve performance.

Average Memory Access Time (AMAT) = (Hit Time) + (Miss Penalty)*(Miss Rate)

Example

What’s the Miss Rate?
● First loop

○ Note array starts at beginning of a block
■ 0x600 -> 0b 011000 | 0000 | 00

○ First access misses (cold cache)
■ Loads a[0] through a[3] into cache
■ a[1] through a[3] are hits

char val = 0;

for (int i = 0; i < 8; i++)
 val += a[i];

for (i = 0; i < 8; i++)
 val ^= a[i];

a is a char array of size 8.
Its address is 0x600, and the cache starts cold.

Assume i and val are stored in registers.

Cache Parameters
C = 64 bytes K = 4 bytes E = 1

Index
Block Offset

00 01 10 11

00 a[0] a[1] a[2] a[3]

01 ? ? ? ?

10 ? ? ? ?

... ...

What’s the Miss Rate?
● First loop (continued)

○ Next miss on a[4]
■ Loads a[4] through a[7] into cache
■ a[5] through a[7] are hits

○ 8 accesses, 2 misses

char val = 0;

for (int i = 0; i < 8; i++)
 val += a[i];

for (i = 0; i < 8; i++)
 val ^= a[i];Index

Block Offset
00 01 10 11

00 a[0] a[1] a[2] a[3]

01 a[4] a[5] a[6] a[7]

10 ? ? ? ?

... ...

a is a char array of size 8.
Its address is 0x600, and the cache starts cold.

Assume i and val are stored in registers.

Cache Parameters
C = 64 bytes K = 4 bytes E = 1

What’s the Miss Rate?
● Second loop

○ Entire array is still in the cache!
○ 8 accesses, 0 misses char val = 0;

for (int i = 0; i < 8; i++)
 val += a[i];

for (i = 0; i < 8; i++)
 val ^= a[i];

● Overall miss rate
○ 16 accesses, 2 misses
○ 2 / 16 = 12.5%

Index
Block Offset

00 01 10 11

00 a[0] a[1] a[2] a[3]

01 a[4] a[5] a[6] a[7]

10 ? ? ? ?

... ...

a is a char array of size 8.
Its address is 0x600, and the cache starts cold.

Assume i and val are stored in registers.

Cache Parameters
C = 64 bytes K = 4 bytes E = 1

Cache Simulator

Cache Simulator!

Link:
https://courses.cs.washington.edu/courses/cse351/cachesim/

The cache simulator can be a helpful tool for reasoning through cache
problems and mechanisms, particularly on homework and in lab 4.

https://courses.cs.washington.edu/courses/cse351/cachesim/

That’s All, Folks!
Thanks for attending section! Feel free to stick around for a bit if you have
quick questions (otherwise post on Ed or go to office hours).

See you all on Friday!

