
CSE 351 Section 5 – Calling Convention & Stack Discipline
Welcome back to section. We’re happy that you’re here ☺

Procedures and the Stack

The Stack is a region in memory which starts from the highest memory address and grows downwards when
necessary as programs execute. We consider the region with the highest address the Stack “bottom” and the region
with the lowest address the Stack “top”. %rsp is a dedicated special register which points to the current Stack top.

In x86-64, the Stack can be divided into individual stack frames for each function, which may contain the following
sections (in order):

● Return address
○ Pushed by callq; address of instruction after callq

● Callee-saved registers
○ Only if function modi�ies/uses them

● Local variables
○ Variables that �it in a register may not be allocated on the Stack
○ Unavoidable if variable is too big for a register (e.g., array)
○ Unavoidable if variable needs an address (i.e., uses &var)

● Caller-saved registers
○ Only if values are needed across a function call

● Argument build
○ Only if function calls a function with more than six arguments

Example: consider the following lines of code and draw out the stack frames for main and foo right before foo
returns (i.e., before any deallocation):

int main(int argc, char* argv[]) {
int x = 351;
int a[] = {1, 2, 3};
int y = foo(&x, 2, 3, 4, 5, 6, 7);
return y + argc;

}

int foo(int* arg1, int arg2, ..., int arg7) {
return *arg1 + arg7;

}

Consider the following x86-64 assembly and C code for the recursive function rfun.

// Recursive function rfun
long rfun(char *s) {

if (*s) {
long temp = (long)*s;
s++;
return temp + rfun(s);

}
return 0;

}

// Main Function - program entry
int main(int argc, char **argv) {

char *s = "CSE351";
long r = rfun(s);
printf("r: %ld\n", r);

}

00000000004005e6 <rfun>:

4005e6: 0f b6 07 movzbl (%rdi),%eax

4005e9: 84 c0 test %al,%al

4005eb: 74 13 je 400600 <rfun+0x1a>

4005ed: 53 push %rbx

4005ee: 48 0f be d8 movsbq %al,%rbx

4005f2: 48 83 c7 01 add $0x1,%rdi

4005f6: e8 eb ff ff ff callq 4005e6 <rfun>

4005fb: 48 01 d8 add %rbx,%rax

4005fe: eb 06 jmp 400606 <rfun+0x20>

400600: b8 00 00 00 00 mov $0x0,%eax

400605: c3 retq

400606: 5b pop %rbx

400607: c3 retq

a) In terms of the C function, what value is being saved on the stack?

Value: *s.

The movsbq instruction at 0x4005ee puts *s into %rbx, which is pushed onto the stack by the pushq
instruction at 0x4005ed.

b) What is the return address to rfun that gets stored on the stack during the recursive calls (in hex)?

0x4005�b

c) Assume main calls rfun with char *s = “CSE351” and then prints the result using the printf
function, as shown in the C code above. Assume printf does not call any other procedure. Starting
with (and including) main, how many total stack frames are created, and what is the maximum depth
of the stack?

Total frames: 9 Max depth: 8

main -> rfun(s) -> rfun(s+1) -> rfun(s+2) -> rfun(s+3) -> rfun(s+4) -> rfun(s+5) -> rfun(s+6)->
printf()

The recursive call to rfun(s+6), which handles the null-terminator in the string (base case),still creates a
stack frame since we consider the return address pushed to the stack during a procedure call to be part of

the callee’s stack frame.

d) Assume main calls rfun with char *s = “CSE351”, as shown in the C code. After main calls
rfun, we �ind that the return address to main is stored on the stack at address 0x7fffffffdb38.
On the �irst call to rfun, the register %rdi holds the address 0x4006d0, which is the address of the
input string “CSE 351” (i.e. char *s = 0x4006d0) during the fourth call to rfun.

For each address in the stack diagram below, �ill in both the value and a description of the entry.

Memory Address Value Description
0x7fffffffdb48 Unknown %rsp when main is entered

0x7fffffffdb38 0x400616 Return address to main

0x7fffffffdb30 Unknown Original %rbx

0x7fffffffdb28 0x4005fb Return address

0x7fffffffdb20 *s, “C”, 0x43 Saved %rbx

0x7fffffffdb18 0x4005fb Return address

0x7fffffffdb10 *s, *(s+1), “S”,
0x53

Saved %rbx

0x7fffffffdb08 0x4005fb Return address

0x7fffffffdb00 *s, *(s+2), “E”,
0x45

Saved %rbx

