Integers and Arithmetic Overflow

Arithmetic overflow occurs when the result of a calculation can’t be represented in the current encoding scheme (i.e., it lies outside of the representable range of values), resulting in an incorrect value.

- **Unsigned overflow**: the result lies outside of \([\text{UMin}, \text{UMax}]\); an indicator of this is when you add two numbers and the result is smaller than either number.

- **Signed overflow**: the result lies outside of \([\text{TMin}, \text{TMax}]\); an indicator of this is when you add two numbers with the same sign and the result has the opposite sign.

Exercises:

1) [Spring 2016 Midterm 1C] Assuming these are all signed two’s complement 6-bit integers, compute the result of each of the following additions. For each, indicate if it resulted in overflow.

\[
\begin{align*}
001001 + 110110 & \quad 110001 + 111011 & \quad 011001 + 001100 & \quad 101111 + 011111
\end{align*}
\]

2) [Autumn 2019 Midterm 1C] Find the largest 8-bit unsigned numeral (answer in hex) such that \(c + 0x80\) causes NEITHER signed nor unsigned overflow in 8 bits.
IEEE 754 Floating Point Standard

Goals

- ★ Represent a large range of values (both very small and very large numbers),
- ★ Include a high amount of precision, and
- ★ Allow for real arithmetic results (e.g., ∞ and NaN).

Encoding

The value of a real number can be represented in normalized scientific binary notation as:

$$(-1)^{\text{sign}} \times \text{Mantissa}_2 \times 2^{\text{Exponent}} = (-1)^{S} \times 1.M_2 \times 2^{E-\text{bias}}$$

The binary representation for floating point encodes these three components into separate fields:

<table>
<thead>
<tr>
<th></th>
<th>E</th>
<th>M</th>
</tr>
</thead>
<tbody>
<tr>
<td>float:</td>
<td>1 bit</td>
<td>23 bits</td>
</tr>
<tr>
<td>double:</td>
<td>1 bit</td>
<td>52 bits</td>
</tr>
</tbody>
</table>

- **S**: the sign of the number (0 for positive, 1 for negative)
- **E**: the exponent in biased notation (unsigned with a bias of $2^{w-1}-1$)
- **M**: the mantissa (also called the significand or fraction) *without* the implicit leading 1

Special Cases and Interpretations

The interpretation depends on the values in the exponent and mantissa fields:

<table>
<thead>
<tr>
<th>E</th>
<th>M</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b0...0</td>
<td>anything</td>
<td>denormalized number (denorm)</td>
</tr>
<tr>
<td>anything else</td>
<td>anything</td>
<td>normalized number</td>
</tr>
<tr>
<td>0b1...1</td>
<td>zero</td>
<td>infinity (∞)</td>
</tr>
<tr>
<td>0b1...1</td>
<td>nonzero</td>
<td>not-a-number (NaN)</td>
</tr>
</tbody>
</table>

Mathematical Properties

- Not associative: $(2 + 2^{50}) - 2^{50} \neq 2 + (2^{50} - 2^{50})$
- Not distributive: $100 \times (0.1 + 0.2) \neq 100 \times 0.1 + 100 \times 0.2$
- Not cumulative: $2^{25} + 1 + 1 + 1 + 1 \neq 2^{25} + 4$
Exercises:

3) Let’s say that we want to represent the number 3145728.125 (broken down as $2^{21} + 2^{20} + 2^{-3}$)
 a) Convert this number to into single precision floating point representation:

 b) Which limitation of floating point representation does this result highlight?

4) [Summer 2018 Midterm 1E-G] We are working with a new floating point datatype (flo) that follows the same conventions as IEEE 754 except using 8 bits split into the following fields:

 - Sign (1)
 - Exponent (3)
 - Mantissa (4)

 a) What is the encoding of the most negative real number that we can represent (∞ is not a real number) in this floating point scheme (binary)?

 b) If we have signed char $x = \text{0b10101000} = -88$, what will occur if we cast flo f = (flo) x (i.e., try to represent the value stored in x as a flo)?

 - Rounding
 - Underflow
 - Overflow
 - None of these

5) Based on the floating point representation, explain why each of the three mathematical property examples shown on the previous page occurs.
 a) Not associative:

 b) Not distributive:

 c) Not cumulative:

6) If we have float x, y, give two different reasons why $(\text{x} + 2*\text{y}) - \text{y} \neq \text{x} + \text{y}$ might evaluate to false.