CSE 351 Section 3 – Integers and Floating Point

Welcome back to section, we're happy that you're here $\ensuremath{\textcircled{}}$

Integers and Arithmetic Overflow

Exercises:

1) [Spring 2016 Midterm 1C] Assuming these are all signed two's complement 6-bit integers, compute the result of each of the following additions. For each, indicate if it resulted in overflow.

	1101100	100101	001110
+ 110110 +	<u>111011</u> +	<u>001100</u> +	<u>011111</u>

2) [Autumn 2019 Midterm 1C] Find the largest 8-bit unsigned numeral (answer in hex) such that c + 0x80 causes NEITHER signed nor unsigned overflow in 8 bits.

Unsigned overflow (*i.e.*, a carry-out) will occur for $c \ge 0x80$. Signed overflow can only happen if c is negative (looking for neg + neg = pos), which also occurs when $c \ge 0x80$. Therefore, the largest numeral that *doesn't* cause overflow is **0x7F**.

IEEE 754 Floating Point Standard

Exercises:

- 3) Let's say that we want to represent the number 3145728.125 (broken down as $2^{21} + 2^{20} + 2^{-3}$)
 - a) Convert this number to into single precision floating point representation:

0	1	0	0	1	0	1	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---

 $2^{21} + 2^{20} + 2^{-3} = 2^{21}(1+2^{-1}+2^{-24}) = 1.10...01_2 \times 2^{21}$ with 22 zeros in the mantissa. Therefore, S = 0, E = 21+127 = 128 + 16 + 4 = 0b10010100, M = 0b10...0.

b) Which limitation of floating point representation does this result highlight?

Not enough bits in the mantissa to hold 2⁻³, which caused **rounding**.

4) [Summer 2018 Midterm 1E-G] We are working with a new floating point datatype (flo) that follows the same conventions as IEEE 754 except using 8 bits split into the following fields:

Sign (1)	Exponent (3)	Mantissa (4)

a) What is the encoding of the most negative real number that we can represent (∞ is not a real number) in this floating point scheme (binary)?

Largest normalized number, but negative means S = 1, E = 0b110, $M = 0b1111 \rightarrow 0b11101111$.

b) If we have signed char x = 0b10101000 = -88, what will occur if we cast flo f = (flo) x (*i.e.*, try to represent the value stored in x as a flo)?

Rounding	Underflow	Overflow	None of these

From part (a), the largest normalized magnitude we can represent is $1.1111_2 \ge 2^{6-\text{bias}}$. Here, bias = $2^{3-1}-1 = 3$, so $1.1111_2 \ge 2^3 = 1111.1_2 = 15.5$. 88 > 15.5, so this number is too large in magnitude to encode, so we end up with overflow (*i.e.*, the result is ∞).

Another way of seeing this is that $-88 = -(64 + 16 + 8) = -1.011_2 \times 2^6$ and the exponent 6 is too large to encode (6 + bias = 9, which requires 4 bits).

- 5) Based on the floating point representation, explain why each of the three mathematical property examples shown on the previous page occurs.
 - a) Not associative: Only 23 bits of mantissa, so $2 + 2^{50} = 2^{50}$ (2 gets rounded off). So LHS = 0, RHS = 2.
 - b) Not distributive: 0.1 and 0.2 have infinite representations in binary point ($0.2 = 0.0011_2$), so the LHS and RHS suffer from different amounts of rounding (try it!).
 - c) Not cumulative: $1 = 2^{0}$ is 25 powers of 2 away from 2^{25} , so $2^{25} + 1 = 2^{25}$, but $4 = 2^{2}$ is 23 powers of 2 away from 2^{25} , so it doesn't get rounded off.
- 6) If we have float x, y;, give two *different* reasons why (x+2*y)-y == x+y might evaluate to false.

(1) Rounding error: like what is seen in the examples above.

(2) Overflow: if x and y are large enough, then x+2*y may result in infinity when x+y does not.