CSE 351 Section 3 - Integers and Floating Point
Welcome back to section, we're happy that you're here ©

Integers and Arithmetic Overflow

Exercises:

1) [Spring 2016 Midterm 1C] Assuming these are all signed two's complement 6 -bit integers, compute the result of each of the following additions. For each, indicate if it resulted in overflow.

001001	110001	011001	101111
$\begin{array}{r}\text { + } 110110 \\ \hline\end{array}$	$\begin{array}{r}\text { + } 111011 \\ \hline\end{array}$	+ 001100	+ 011111
111111	± 101100	100101	001110
$(+)+(-)$	$(-)+(-)=(-)$	$(+)+(+)=(-)$	$(-)+(+)=(-)$
No	No	Yes	No

2) [Autumn 2019 Midterm 1C] Find the largest 8 -bit unsigned numeral (answer in hex) such that $c+0 x 80$ causes NEITHER signed nor unsigned overflow in 8 bits.

Unsigned overflow (i.e., a carry-out) will occur for $\mathrm{c} \geq 0 \mathrm{x} 80$. Signed overflow can only happen if c is negative (looking for neg + neg $=$ pos), which also occurs when $\mathrm{c} \geq 0 \times 80$. Therefore, the largest numeral that doesn't cause overflow is $0 \times 7 \mathrm{~F}$.

IEEE 754 Floating Point Standard

Exercises:

3) Let's say that we want to represent the number 3145728.125 (broken down as $2^{21}+2^{20}+2^{-3}$)
a) Convert this number to into single precision floating point representation:

0	1	0	0	1	0	1	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

$2^{21}+2^{20}+2^{-3}=2^{21}\left(1+2^{-1}+2^{-24}\right)=1.10 \ldots 01_{2} \times 2^{21}$ with 22 zeros in the mantissa.
Therefore, $\mathrm{S}=0, \mathrm{E}=21+127=128+16+4=0 \mathrm{~b} 10010100, \mathrm{M}=0 \mathrm{~b} 10 \ldots 0$.
b) Which limitation of floating point representation does this result highlight?

Not enough bits in the mantissa to hold 2^{-3}, which caused rounding.
4) [Summer 2018 Midterm 1E-G] We are working with a new floating point datatype (flo) that follows the same conventions as IEEE 754 except using 8 bits split into the following fields:

Sign (1)	Exponent (3)	Mantissa (4)

a) What is the encoding of the most negative real number that we can represent (∞ is not a real number) in this floating point scheme (binary)?

Largest normalized number, but negative means $S=1, E=0 b 110, M=0 b 1111 \rightarrow \mathbf{0 b 1 1 1 0 1 1 1 1}$.
b) If we have signed char $\mathrm{x}=0 \mathrm{~b} 10101000=-88$, what will occur if we cast $\mathrm{flof} \mathbf{f}=(\mathrm{flo}) \mathbf{x}$ (i.e., try to represent the value stored in x as aflo)?

Rounding Underflow Overflow None of these
From part (a), the largest normalized magnitude we can represent is $1.1111_{2} \times 2^{6 \text {-bias. }}$. Here, bias $=2^{3-1}-1=$ 3 , so $1.1111_{2} \times 2^{3}=1111.1_{2}=15.5 .88>15.5$, so this number is too large in magnitude to encode, so we end up with overflow (i.e., the result is ∞).

Another way of seeing this is that $-88=-(64+16+8)=-1.011_{2} \times 2^{6}$ and the exponent 6 is too large to encode ($6+$ bias $=9$, which requires 4 bits).
5) Based on the floating point representation, explain why each of the three mathematical property examples shown on the previous page occurs.
a) Not associative:

Only 23 bits of mantissa, so $2+2^{50}=2^{50}$ (2 gets rounded off). So LHS $=0$, RHS $=2$.
b) Not distributive:
0.1 and 0.2 have infinite representations in binary point $\left(0.2=0 . \overline{0011}_{2}\right)$, so the LHS and RHS suffer from different amounts of rounding (try it!).
c) Not cumulative:
$1=2^{0}$ is 25 powers of 2 away from 2^{25}, so $2^{25}+1=2^{25}$, but $4=2^{2}$ is 23 powers of 2 away from 2^{25}, so it doesn't get rounded off.
6) If we have float $x, y ;$, give two differentreasons why ($x+2 * y$) $-\mathrm{y}==x+y$ might evaluate to false.
(1) Rounding error: like what is seen in the examples above.
(2) Overflow: if x and y are large enough, then $x+2 * y$ may result in infinity when $x+y$ does not.

