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CSE 351 Section 3 – Integers and Floating Point
Welcome back to section, we’re happy that you’re here☺

Integers and Arithmetic Overflow

Exercises:

1) [Spring 2016 Midterm 1C]  Assuming these are all signed two’s complement 6-bit integers, compute the result
of each of the following  additions. For each, indicate if it resulted in overflow.

001001
+ 110110
111111

(+) + (–)
No

110001
+ 111011
1101100

(–) + (–) = (–)
No

011001
+ 001100
100101

(+) + (+) = (–)
Yes

101111
+ 011111
001110

(–) + (+) = (–)
No

2) [Autumn 2019 Midterm 1C]  Find the largest 8-bit unsigned numeral (answer in hex) such that c + 0x80 causes
NEITHER signed nor unsigned overflow in 8 bits.

Unsigned overflow (i.e., a carry-out) will occur for c ≥ 0x80.  Signed overflow can only happen if c is
negative (looking for neg + neg = pos), which also occurs when c ≥ 0x80.  Therefore, the largest
numeral that doesn’t cause overflow is 0x7F.

IEEE 754 Floating Point Standard

Exercises:

3) Let’s say that we want to represent the number 3145728.125 (broken down as 221 + 220 + 2−3)

a) Convert this number to into single precision floating point representation:

0 1 0 0 1 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

221 + 220 + 2−3 = 221(1+2-1+2-24) = 1.10…012 x 221 with 22 zeros in the mantissa.
Therefore, S = 0, E = 21+127 = 128 + 16 + 4 = 0b10010100, M = 0b10…0.

b) Which limitation of floating point representation does this result highlight?

Not enough bits in the mantissa to hold 2-3, which caused rounding.

4) [Summer 2018 Midterm 1E-G]  We are working with a new floating point datatype (flo) that follows the
same conventions as IEEE 754 except using 8 bits split into the following fields:

Sign (1) Exponent (3) Mantissa (4)

a) What is the encoding of the most negative real number that we can represent (∞ is not a real number) in
this floating point scheme (binary)?

Largest normalized number, but negative means S = 1, E = 0b110, M = 0b1111 → 0b11101111.
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b) If we have signed char x = 0b10101000 = -88, what will occur if we cast flo f = (flo) x
(i.e., try to represent the value stored in x as a flo)?

Rounding Underflow Overflow None of these

From part (a), the largest normalized magnitude we can represent is 1.11112 x 26-bias.  Here, bias = 23-1-1 =
3, so 1.11112 x 23 = 1111.12 = 15.5.  88 > 15.5, so this number is too large in magnitude to encode, so we
end up with overflow (i.e., the result is ∞).

Another way of seeing this is that -88 = -(64 + 16 + 8) = -1.0112 x 26 and the exponent 6 is too large to
encode (6 + bias = 9, which requires 4 bits).

5) Based on the floating point representation, explain why each of the three mathematical property examples
shown on the previous page occurs.

a) Not associative:
Only 23 bits of mantissa, so 2 + 250 = 250 (2 gets rounded off). So LHS = 0, RHS = 2.

b) Not distributive:
0.1 and 0.2 have infinite representations in binary point (0.2 = 0. 2), so the LHS and RHS suffer 0011
from different amounts of rounding (try it!).

c) Not cumulative:
1 = 20 is 25 powers of 2 away from 225, so 225 + 1 = 225, but 4 = 22 is 23 powers of 2 away from 225, so it
doesn’t get rounded off.

6) If we have float x, y;, give two different reasons why (x+2*y)-y == x+y might evaluate to false.

(1) Rounding error: like what is seen in the examples above.
(2) Overflow: if x and y are large enough, then x+2*y may result in infinity when x+y does not.


