CSE 351 Section 3

Overflow and Floating Point

Autumn 2022

Administrivia

- Lab 1b:
- Due Monday, 10/17
- Run make clean and then make to ensure your program compiles!
- Late days are always an option
- Homeworks on Ed:
- HW 6 (Floating Point I) due tomorrow, 10/14
- HW 7 (Floating Point II) due Monday, 10/17

Integer Overflow

Arithmetic Overflow

Occurs when:

\rightarrow The result of a calculation can't be represented in the current encoding scheme

- i.e. Lies outside the representable range of values
\rightarrow Results in an incorrect result

Unsigned Overflow

Occurs when:

\rightarrow The result lies outside [UMin, UMax]

- Indicator: Adding two numbers and the result is smaller than either number

$$
\begin{array}{rr}
0 b 1100 & 12 \\
+ \text { Ob } 0111 & 7 \\
\hline 1 \mid 0011 & 3
\end{array}
$$

Signed Overflow

Occurs when:

$\rightarrow \quad$ The result lies outside [TMin, TMax] - Indicator: Adding two numbers with the same sign and the result has the opposite sign

Ob 0110
$+0 b 0011$
1001

Exercises!

Overflow: Exercise 1

Assuming these are all signed two's complement 6-bit integers, compute the result of each of the following additions. For each, indicate if it resulted in overflow. [Spring 2016 Midterm 1C]

001001	110001	011001	101111
+110110	+111011	+001100	+011111

Overflow: Exercise 1

Assuming these are all signed two's complement 6-bit integers, compute the result of each of the following additions. For each, indicate if it resulted in overflow. [Spring 2016 Midterm 1C]

001001	110001	011001	101111
+110110	+111011	+001100	+011111
111111	1101100	Yes	± 001110
No	No	No	

Overflow: Exercise 2

Find the largest 8-bit unsigned numeral (answer in hex) such that c + 0×80 causes NEITHER signed nor unsigned overflow in 8 bits. [Autumn 2019 Midterm 1C]

Overflow: Exercise 2

Find the largest 8-bit unsigned numeral (answer in hex) such that c + 0×80 causes NEITHER signed nor unsigned overflow in 8 bits. [Autumn 2019 Midterm 1C]

Unsigned overflow will occur for c >= 0x80. Signed overflow can only happen if c is negative (also $>=0 \times 80$). Largest is therefore, $0 \times 7 \mathrm{~F}$

Overflow: Exercise 3

Find the smallest 8-bit numeral (answer in hex) such that c $+0 \times 71$ causes signed overflow, but NOT unsigned overflow in 8 bits. [Autumn 2018 Midterm 1C]

For signed overflow, need (+) + (+) = (-). For no unsigned overflow, need no carryout from MSB. The first (-) encoding we can reach from Ox71 is 0×80. 0x80-0x71 = 0xF.

Floating Point

Floating Point

$2.75_{10}=10.11_{2}=(+) 1.011_{2} \times 2$

 exponent
 mantissa
 (or significand)

How can we build a representation that has a large range of values, high precision, and handle real arithmetic results (including special values like infinity and NaN)?

Floating Point Representation

\rightarrow Encode the sign, mantissa, and exponent in three "fields" (S, E, M)
\rightarrow For a single-precision floating point number (float), we have the following field widths:
$31 \quad 30 \quad 2322$

\mathbf{S}	\mathbf{E}	\mathbf{M}
1 bit	8 bit	23 bits

Special Cases in Floating Point

\mathbf{E}	\mathbf{M}	Meaning
$0 \mathrm{~b} 0 \ldots 0$	$0 \mathrm{~b} 0 \ldots 0$	$+/-0$
$0 \mathrm{~b} 0 \ldots 0$	non-zero	denormalized number
everything else	anything	normalized number
$0 \mathrm{~b} 1 \ldots 1$	$0 \mathrm{~b} 0 \ldots 0$	$+/-\infty$
$0 \mathrm{~b} 1 \ldots 1$	non-zero	Not-a-Number (NaN)

Exponent \& E-Field

$+1.011_{2} \times 21$

\rightarrow We only care about the exponent value, not the base
\rightarrow Biased notation to represent + and - values (unsigned with a bias/offset)
\rightarrow The bias is $\mathbf{2}^{\mathrm{w}-1} \mathbf{- 1}$ where the width of the E field is \mathbf{w}
Ex) $1.011_{2} \times 2^{1}$ stored as a 32-bit float

- Exp $=1$
- Bias $=2^{8-1}-1=127$
- $\mathbf{E}=\operatorname{Exp}+$ Bias $=1+127=128$

Note: Overflow/underflow occurs when we try to calculate numbers outside of the representable range.

Mantissa \& M-Field
 $+1.011 / 2 \times 2^{1}$

\rightarrow Significand is stored with the leading 1 implied
\rightarrow Numbers of this form are normalized
Ex) $1.011_{2} \times 2^{1}, 32$-bit float:

- Mantissa= 1.011
- E is not 0 , so the leading 1 is implied (normalized)
- $\mathbf{M}=0 b 01100$... 0

Note: Rounding errors may occur to to limitations of the precision we have (i.e., the field width).

Limitations of Floating Point

\rightarrow Not associative!
\rightarrow Not distributive!

$$
100 \times(0.1+0.2) \neq 100 \times 0.1+100 \times 0.2
$$

$$
2^{25}+1+1+1+1 \neq 2^{25}+4
$$

\rightarrow Not cumulative!

$$
\left(2+2^{50}\right)-2^{50} \neq 2+\left(2^{50}-2^{50}\right)
$$

Exercises!

Exercises 1 \& 2

$$
\mathbf{E}=\mathrm{Exp}+\text { Bias }
$$

Bias (4 bits) = ?

Exponent	E (4 bits)				E (8 bits)								
1													
0													

Exercises 1 \& 2

$$
\mathbf{E}=\mathrm{Exp}+\text { Bias }
$$

Bias $(4$ bits $)=\quad 2 \wedge(4-1)-1=7$

| Exponent | E (4 bits) | | | | | E (8 bits) | | | | | | | |
| :---: | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :---: | :---: |
| 1 | 7 | 0 | 0 | 0 | | 7 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 0 | 0 | 7 | 7 | 7 | | 0 | 7 | 7 | 7 | 7 | 7 | 7 | 7 |
| -1 | 0 | 7 | 7 | 0 | | 0 | 7 | 7 | 7 | 7 | 7 | 7 | 0 |

Exercise 3

Represent 3145728.125_{10} as a single precision floating point $\left(2^{21}+2^{20}+2^{-3}\right)$
a) Convert to single precision floating point

Exercise 3

Represent 3145728.125_{10} as a single precision floating point $\left(2^{21}+2^{20}+2^{-3}\right)$
a) Convert to single precision floating point

Exercise 3

Represent 3145728.125_{10} as a single precision floating point $\left(2^{21}+2^{20}+2^{-3}\right)$
b) How does this number highlight a limitation of floating point representation?

Exercise 3

Represent 3145728.125_{10} as a single precision floating point $\left(2^{21}+2^{20}+2^{-3}\right)$
b) How does this number highlight a limitation of floating point representation?

Could only represent 2^21 + 2^20. Not enough bits in the mantissa to hold 2^{\wedge} - 3 , which caused rounding

Exercise 4

0×80000000

0xFF94BEEF NaN
0×41180000
$+9.5$

Exercise 5

Based on the floating point representation, explain why each of the three mathematical property examples shown on the previous page occurs.
a) Not Associative
b) Not Distributive
c) Not Cumulative

Exercise 5

Based on the floating point representation, explain why each of the three mathematical property examples shown on the previous page occurs.
a) Not Associative

Only 23 bits of mantissa, so $2+2 \wedge 50=2 \wedge 50$ (2 gets rounded off). So LHS = 0, RHS = 2 .

Exercise 5

Based on the floating point representation, explain why each of the three mathematical property examples shown on the previous page occurs.
b) Not Distributive
0.1 and 0.2 have infinite representations in binary point ($0.2=0 \mathrm{~b}$ $0.00110011 \ldots$...), so the LHS and RHS suffer from different amounts of rounding (try it!).

Exercise 5

Based on the floating point representation, explain why each of the three mathematical property examples shown on the previous page occurs.
c) Not Cumulative
$1=2^{\wedge} 0$ is 25 powers of 2 away from 2^25, so $2^{\wedge} 25+1=2^{\wedge} 25$, but
$4=2^{\wedge} 2$ is 23 powers of 2 away from $2 \wedge 25$, so it doesn't get rounded off.

Exercise 6

If x and y are variable type float, give two different reasons why $(x+2 * y)-y==x+y$ might evaluate to false.

Exercise 6

If x and y are variable type float, give two different reasons why $(x+2 * y)-y==x+y$ might evaluate to false.

1. Rounding Error
2. Overflow - if x and y are large enough, then $x+2 y$ may result in infinity while $x+y$ does not

DECODING FLOWCHART

It can seem a bit confusing to interpret a floating point from a bit-level representation.

Thankfully, the process is very methodical, so we can illustrate it using a diagram like so \rightarrow

From Exercise 4

OxFF94BEEF
Ob1111 11111001 ...
NaN

IEEE 754 Float (32 bit) Flowchart

