
CSE 351 Section 3
Overflow and Floating Point

Autumn 2022

● Lab 1b:
○ Due Monday, 10/17
○ Run make clean and then make to ensure your program compiles!
○ Late days are always an option

● Homeworks on Ed:
○ HW 6 (Floating Point I) due tomorrow, 10/14
○ HW 7 (Floating Point II) due Monday, 10/17

Administrivia

Integer Overflow

Arithmetic Overflow
Occurs when:

➔ The result of a calculation can’t
be represented in the current
encoding scheme
◆ i.e. Lies outside the

representable range of
values

➔ Results in an incorrect result

Occurs when:

➔ The result lies outside [UMin, UMax]
◆ Indicator: Adding two numbers

and the result is smaller than
either number

 0b 1 1 0 0 12
+ 0b 0 1 1 1 17

 b

Unsigned Overflow

1|0 0 1 1 13

Signed Overflow
Occurs when:

➔ The result lies outside [TMin, TMax]
◆ Indicator: Adding two numbers

with the same sign and the result
has the opposite sign

 0b 0 1 1 0 16
+ 0b 0 0 1 1 13

 b 1 0 0 1 1-7

Exercises!

Assuming these are all signed two’s complement 6-bit integers,
compute the result of each of the following additions. For each,
indicate if it resulted in overflow. [Spring 2016 Midterm 1C]

Overflow: Exercise 1

Assuming these are all signed two’s complement 6-bit integers,
compute the result of each of the following additions. For each,
indicate if it resulted in overflow. [Spring 2016 Midterm 1C]

Overflow: Exercise 1

111111 1101100 100101 1001110

 No No Yes No

Find the largest 8-bit unsigned numeral (answer in hex) such that c +
0x80 causes NEITHER signed nor unsigned overflow in 8 bits. [Autumn
2019 Midterm 1C]

Overflow: Exercise 2

Find the largest 8-bit unsigned numeral (answer in hex) such that c +
0x80 causes NEITHER signed nor unsigned overflow in 8 bits. [Autumn
2019 Midterm 1C]

Overflow: Exercise 2

Unsigned overflow will occur for c >= 0x80. Signed overflow can only
happen if c is negative (also >= 0x80). Largest is therefore, 0x7F

Find the smallest 8-bit numeral (answer in hex) such that c + 0x71
causes signed overflow, but NOT unsigned overflow in 8 bits. [Autumn
2018 Midterm 1C]

Overflow: Exercise 3

For signed overflow, need (+) + (+) = (-). For no unsigned overflow, need
no carryout from MSB. The first (-) encoding we can reach from 0x71 is
0x80. 0x80 – 0x71 = 0xF.

Floating Point

2.7510 = 10.112= (+)1.0112 × 21

How can we build a representation that has a large range of values,
high precision, and handle real arithmetic results (including special

values like infinity and NaN)?

sign exponent
mantissa
(or significand)

Floating Point

➔ Encode the sign, mantissa, and exponent in three “fields” (S, E, M)
➔ For a single-precision floating point number (float), we have the following

field widths:

31 30 23 22 0

S E M

1 bit 8 bit 23 bits

+1.0112 × 21

Floating Point Representation

Special Cases in Floating Point

➔ We only care about the exponent value, not the base
➔ Biased notation to represent + and - values (unsigned with a bias/offset)
➔ The bias is 2w-1-1 where the width of the E field is w

Ex) 1.0112 x 21 stored as a 32-bit float
● Exp = 1
● Bias = 28-1-1 = 127
● E = Exp + Bias = 1 + 127 = 128

Note: Overflow/underflow occurs when we try to calculate numbers outside
of the representable range.

Exponent & E-Field +1.0112 × 21

➔ Significand is stored with the leading 1 implied
➔ Numbers of this form are normalized

Ex) 1.0112 x 21, 32-bit float:
● Mantissa = 1.011
● E is not 0, so the leading 1 is implied (normalized)
● M = 0b01100 … 0

Note: Rounding errors may occur to to limitations of the precision we have
(i.e., the field width).

Mantissa & M-Field +1.0112 × 21

➔ Not associative! (2 + 250) – 250 ≠ 2 + (250 – 250)

➔ Not distributive! 100 × (0.1 + 0.2) ≠ 100 × 0.1 + 100 × 0.2

➔ Not cumulative! 225 + 1 + 1 + 1 + 1 ≠ 225 + 4

Limitations of Floating Point

Exercises!

Bias (4 bits) = ?

Exercises 1 & 2
E = Exp + Bias

Bias (4 bits) = 2^(4-1) - 1 = 7

Exercises 1 & 2

1 0 0 0 1 0 0 0 0 0 0 0

0 1 1 1 0 1 1 1 1 1 1 1

0 1 1 0 0 1 1 1 1 1 1 0

E = Exp + Bias

Represent 3145728.12510 as a single precision floating point
(221+220+2-3)

a) Convert to single precision floating point

Exercise 3

Represent 3145728.12510 as a single precision floating point
(221+220+2-3)

a) Convert to single precision floating point

Exercise 3

01001010010000000000000000000000

b) How does this number highlight a limitation of floating point
representation?

Represent 3145728.12510 as a single precision floating point
(221+220+2-3)

Exercise 3

b) How does this number highlight a limitation of floating point
representation?

Could only represent 2^21 + 2^20. Not enough bits in the
mantissa to hold 2^-3, which caused rounding

Represent 3145728.12510 as a single precision floating point
(221+220+2-3)

Exercise 3

0x80000000

0xFF94BEEF

0x41180000

Exercise 4
-0

NaN

+9.5

Based on the floating point representation, explain why each of the
three mathematical property examples shown on the previous page
occurs.

Exercise 5

a) Not Associative

b) Not Distributive

c) Not Cumulative

Based on the floating point representation, explain why each of the
three mathematical property examples shown on the previous page
occurs.

Exercise 5

a) Not Associative

Only 23 bits of mantissa, so 2 + 2^50 = 2^50 (2 gets rounded off).
So LHS = 0, RHS = 2.

Based on the floating point representation, explain why each of the
three mathematical property examples shown on the previous page
occurs.

Exercise 5

b) Not Distributive

0.1 and 0.2 have infinite representations in binary point (0.2 = 0b
0.00110011…), so the LHS and RHS suffer from different amounts
of rounding (try it!).

Based on the floating point representation, explain why each of the
three mathematical property examples shown on the previous page
occurs.

Exercise 5

c) Not Cumulative

1 = 2^0 is 25 powers of 2 away from 2^25, so 2^25 + 1 = 2^25, but
4 = 2^2 is 23 powers of 2 away from 2^25, so it doesn’t get
rounded off.

If x and y are variable type float, give two different reasons why
(x+2*y)-y == x+y might evaluate to false.

Exercise 6

If x and y are variable type float, give two different reasons why
(x+2*y)-y == x+y might evaluate to false.

Exercise 6

1. Rounding Error
2. Overflow - if x and y are large enough, then x+2y may

result in infinity while x+y does not

DECODING FLOWCHART
It can seem a bit confusing to
interpret a floating point from a
bit-level representation.

Thankfully, the process is very
methodical, so we can illustrate it
using a diagram like so →

From Exercise 4
0xFF94BEEF
0b1111 1111 1001 …
NaN

