
CSE 351 Section 3
Overflow and Floating Point

Autumn 2022



● Lab 1b:
○ Due Monday, 10/17
○ Run make clean and then make to ensure your program compiles!
○ Late days are always an option

● Homeworks on Ed:
○ HW 6 (Floating Point I) due tomorrow, 10/14
○ HW 7 (Floating Point II) due Monday, 10/17

Administrivia



Integer Overflow



Arithmetic Overflow
Occurs when:

➔ The result of a calculation can’t 
be represented in the current 
encoding scheme 
◆ i.e. Lies outside the 

representable range of 
values

➔ Results in an incorrect result



Occurs when: 

➔ The result lies outside [UMin, UMax]
◆ Indicator: Adding two numbers 

and the result is smaller than 
either number

   0b 1 1 0 0               12
+ 0b 0 1 1 1               17

  b 

Unsigned Overflow

1|0 0 1 1    13



Signed Overflow
Occurs when: 

➔ The result lies outside [TMin, TMax]
◆ Indicator: Adding two numbers 

with the same sign and the result 
has the opposite sign

   0b 0 1 1 0               16
+ 0b 0 0 1 1               13

  b    1 0 0 1   1-7



Exercises!



Assuming these are all signed two’s complement 6-bit integers, 
compute the result of each of the following additions. For each, 
indicate if it resulted in overflow. [Spring 2016 Midterm 1C]

Overflow: Exercise 1



Assuming these are all signed two’s complement 6-bit integers, 
compute the result of each of the following additions. For each, 
indicate if it resulted in overflow. [Spring 2016 Midterm 1C]

Overflow: Exercise 1

111111           1101100            100101           1001110

   No                No               Yes                No



Find the largest 8-bit unsigned numeral (answer in hex) such that c + 
0x80 causes NEITHER signed nor unsigned overflow in 8 bits.  [Autumn 
2019 Midterm 1C]

Overflow: Exercise 2



Find the largest 8-bit unsigned numeral (answer in hex) such that c + 
0x80 causes NEITHER signed nor unsigned overflow in 8 bits.  [Autumn 
2019 Midterm 1C]

Overflow: Exercise 2

Unsigned overflow will occur for c >= 0x80. Signed overflow can only 
happen if c is negative (also >= 0x80). Largest is therefore, 0x7F



Find the smallest 8-bit numeral (answer in hex) such that c + 0x71 
causes signed overflow, but NOT unsigned overflow in 8 bits. [Autumn 
2018 Midterm 1C]

Overflow: Exercise 3

For signed overflow, need (+) + (+) = (-). For no unsigned overflow, need 
no carryout from MSB. The first (-) encoding we can reach from 0x71 is 
0x80. 0x80 – 0x71 = 0xF.



Floating Point



2.7510 = 10.112= (+)1.0112 × 21

How can we build a representation that has a large range of values, 
high precision, and handle real arithmetic results (including special 

values like infinity and NaN)?

sign exponent
mantissa
(or significand)

Floating Point



➔ Encode the sign, mantissa, and exponent in three “fields” (S, E, M)
➔ For a single-precision floating point number (float), we have the following 

field widths:

31 30 23 22   0

S E M

1 bit 8 bit 23 bits

+1.0112 × 21

Floating Point Representation



Special Cases in Floating Point



➔ We only care about the exponent value, not the base
➔ Biased notation to represent + and - values (unsigned with a bias/offset)
➔ The bias is 2w-1-1 where the width of the E field is w

Ex) 1.0112 x 21 stored as a 32-bit float
● Exp = 1
● Bias = 28-1-1 = 127
● E = Exp + Bias = 1 + 127 = 128

Note: Overflow/underflow occurs when we try to calculate numbers outside 
of the representable range.

Exponent & E-Field +1.0112 × 21



➔ Significand is stored with the leading 1 implied
➔ Numbers of this form are normalized

Ex) 1.0112 x 21, 32-bit float:
● Mantissa = 1.011
● E is not 0, so the leading 1 is implied (normalized)
● M = 0b01100 … 0

Note: Rounding errors may occur to to limitations of the precision we have 
(i.e., the field width).

Mantissa & M-Field +1.0112 × 21



➔ Not associative! (2 + 250) – 250 ≠ 2 + (250 – 250)

➔ Not distributive! 100 × (0.1 + 0.2) ≠ 100 × 0.1 + 100 × 0.2

➔ Not cumulative! 225 + 1 + 1 + 1 + 1 ≠ 225 + 4

Limitations of Floating Point



Exercises!



Bias (4 bits) = ?

Exercises 1 & 2
E = Exp + Bias



Bias (4 bits) = 2^(4-1) - 1 = 7

Exercises 1 & 2

1     0    0    0          1    0     0   0    0    0    0   0

0     1      1     1         0     1     1     1     1     1    1     1

0     1     1     0          0    1     1     1     1     1    1     0 

E = Exp + Bias



Represent 3145728.12510 as a single precision floating point 
(221+220+2-3)

a) Convert to single precision floating point

Exercise 3



Represent 3145728.12510 as a single precision floating point 
(221+220+2-3)

a) Convert to single precision floating point

Exercise 3

01001010010000000000000000000000



b) How does this number highlight a limitation of floating point 
representation?

Represent 3145728.12510 as a single precision floating point 
(221+220+2-3)

Exercise 3



b) How does this number highlight a limitation of floating point 
representation?

Could only represent 2^21 + 2^20. Not enough bits in the 
mantissa to hold 2^-3, which caused rounding

Represent 3145728.12510 as a single precision floating point 
(221+220+2-3)

Exercise 3



0x80000000   

0xFF94BEEF      

0x41180000

Exercise 4
-0   

NaN      

+9.5



Based on the floating point representation, explain why each of the 
three mathematical property examples shown on the previous page 
occurs.

Exercise 5

a) Not Associative

b) Not Distributive

c) Not Cumulative



Based on the floating point representation, explain why each of the 
three mathematical property examples shown on the previous page 
occurs.

Exercise 5

a) Not Associative

Only 23 bits of mantissa, so 2 + 2^50 = 2^50 (2 gets rounded off). 
So LHS = 0, RHS = 2.



Based on the floating point representation, explain why each of the 
three mathematical property examples shown on the previous page 
occurs.

Exercise 5

b) Not Distributive

0.1 and 0.2 have infinite representations in binary point (0.2 = 0b 
0.00110011…), so the LHS and RHS suffer from different amounts 
of rounding (try it!).



Based on the floating point representation, explain why each of the 
three mathematical property examples shown on the previous page 
occurs.

Exercise 5

c) Not Cumulative

1 = 2^0 is 25 powers of 2 away from 2^25, so 2^25 + 1 = 2^25, but 
4 = 2^2 is 23 powers of 2 away from 2^25, so it doesn’t get 
rounded off. 



If x and y are variable type float, give two different reasons why 
(x+2*y)-y == x+y might evaluate to false.

Exercise 6



If x and y are variable type float, give two different reasons why 
(x+2*y)-y == x+y might evaluate to false.

Exercise 6

1. Rounding Error
2. Overflow - if x and y are large enough, then x+2y may 

result in infinity while x+y does not



DECODING FLOWCHART
It can seem a bit confusing to 
interpret a floating point from a 
bit-level representation.

Thankfully, the process is very 
methodical, so we can illustrate it 
using a diagram like so → 

From Exercise 4
0xFF94BEEF
0b1111 1111 1001 …
NaN 


