CSE 351 Section 2 – Pointers, Bit Operators, Integers

Pointers

A pointer is a variable that holds an address. C uses pointers explicitly. If we have a variable \(x \), then \(\&x \) gives the address of \(x \) rather than the value of \(x \). If we have a pointer \(p \), then \(*p \) gives us the value that \(p \) points to, rather than the value of \(p \).

Consider the following declarations and assignments:

```c
int x;
int *ptr;
ptr = &x;
```

1) We can represent the result of these three lines of code visually as shown. The variable \(ptr \) stores the address of \(x \), and we say "\(ptr \) points to \(x \)". \(x \) currently doesn’t contain a value since we did not assign \(x \) a value!

2) After executing \(x = 5; \), the memory diagram changes as shown.

3) After executing \(*ptr = 200; \), the memory diagram changes as shown. We modified the value of \(x \) by dereferencing \(ptr \).

Pointer Arithmetic

In C, arithmetic on pointers (++, +, --, -) is scaled by the size of the data type the pointer points to. That is, if \(p \) is declared with pointer \textbf{type}* \(p \), then \(p + i \) will change the value of \(p \) (an address) by \(i \times \text{sizeof(type)} \) (in bytes). If there is a line \(*p = *p + 1 \), regular arithmetic will apply unless \(*p \) is also a pointer datatype.

Exercise:

Draw out the memory diagram after sequential execution of each of the lines below:

```c
int main(int argc, char **argv) {
    int x = 410, y = 350;   // assume &x = 0x10, &y = 0x14
    int *p = &x;            // p is a pointer to an integer
    *p = y;
    p = p + 4;
    p = &y;
    x = *p + 1;
}
```
C Bitwise Operators

<table>
<thead>
<tr>
<th>&</th>
<th>0 1</th>
<th>← AND (&) outputs a 1 only when both input bits are 1.</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0 0</td>
<td>0 0 1</td>
</tr>
<tr>
<td>1</td>
<td>0 1</td>
<td></td>
</tr>
</tbody>
</table>

| | | OR (|) outputs a 1 when either input bit is 1. | → | 1 | 1 1 |
|---|-----|----------------------------------|---|-----|-----|
| ^ | 0 1 | ← XOR (^) outputs a 1 when either input is exclusively 1. |
| 0 | 0 1 | 0 1 |
| 1 | 1 0 | |

<table>
<thead>
<tr>
<th>~</th>
<th></th>
<th>NOT (~) outputs the opposite of its input.</th>
<th>→</th>
<th>1</th>
<th>0</th>
</tr>
</thead>
</table>

Masking is very commonly used with bitwise operations. A mask is a binary constant used to manipulate another bit string in a specific manner, such as setting specific bits to 1 or 0.

Exercises:

1) [Autumn 2019 Midterm Q1B] If signed char a = 0x88, complete the bitwise C statement so that b = 0xF1. The first blank should be an operator and the second blank should be a numeral.

 \[b = a \ ^\ 0x79 \]

2) Implement the following C function using control structures and bitwise operators.

 // returns the number of pairs of bits that are the opposite of each other (i.e. 0 and 1 or 1 and 0)
 // bits are "paired" by taking adjacent bits starting at the lsb (0) and pairs do not overlap.
 // For example, there are 16 distinct pairs in a 32-bit integer

   ```c
   int num_pairs_opposite(int x) {
       int count = 0;
       for (int i = 0; i < 16; i++) {  // 32 bits in an integer
           int bit0 = x & 1;
           int bit1 = (x >> 1) & 1;
           count += bit0 ^ bit1;
           x >>= 2;
       }
       return count;
   }
   ```
Signed Integers with Two’s Complement

Two’s complement is the standard for representing signed integers:

- The most significant bit (MSB) has a negative value; all others have positive values (same as unsigned)
- Binary addition is performed the same way for signed and unsigned
- The bit representation for the negative value (additive inverse) of a Two’s Complement number can be found by:
 flipping all the bits and adding 1 (i.e. \(-x = \sim x + 1\)).

The “number wheel” showing the relationship between 4-bit numerals and their Two’s Complement interpretations is shown on the right:

- The largest number is 7 whereas the smallest number is -8
- There is a nice symmetry between numbers and their negative counterparts except for -8

Exercises:

1) If we have 8 bits to represent integers, answer the following questions:

 a. What is the largest integer? The largest integer + 1? The most negative integer? If it doesn’t apply, write n/a.

 Unsigned:
 - Largest: 1111 1111
 - Largest + 1: 0000 0000
 - Most Negative: n/a

 Two’s Complement:
 - Largest: 0111 1111
 - Largest + 1: 1000 0000
 - Most Negative: 1000 0000

 b. How do you represent (if possible) the following numbers: 39, -39, 127?

 Unsigned:
 - 39: 0010 0111
 - -39: Impossible
 - 127: 0111 1111

 Two’s Complement:
 - 39: 0010 0111
 - -39: 1101 1001
 - 127: 0111 1111

2) [Autumn 2017 Final M1A] Take the 32-bit numeral 0xC0800000. Circle the number representation below that has the most negative value for this numeral.

 - Sign & Magnitude
 - Two’s Complement
 - Unsigned

 Unsigned: Can only represent positive numbers.
 Sign & Mag: Negative number with magnitude 100 0000 10...0₂.
 Two’s: Negative number with magnitude 011 1111 10...0₂ (flip bits + 1).

3) [Winter 2018 Midterm 1C] Given the 4-bit bit vector 0b1101, what is its value in decimal (base 10)? Circle your answer.

 - 13
 - -3
 - -5
 - Undefined

 Need to specify if we want unsigned, sign & magnitude, two’s complement, etc.