
CSE 351 Section 2 – Pointers, Bit Operators, Integers

Pointers

A pointer is a variable that holds an address. C uses pointers explicitly. If we have a variable x, then &x gives the
address of x rather than the value of x. If we have a pointer p, then *p gives us the value that p points to, rather

than the value of p.

Consider the following declarations and assignments:
 int x;
 int *ptr;
 ptr = &x;

1) We can represent the result of these three lines of code visually as shown.
The variable ptr stores the address of x, and we say “ptr points to x.”
x currently doesn’t contain a value since we did not assign x a value!

2) After executing x = 5;, the memory diagram changes as shown.

3) After executing *ptr = 200;, the memory diagram changes as shown.

We modified the value of x by dereferencing ptr.

Pointer Arithmetic

In C, arithmetic on pointers (++, +, --, -) is scaled by the size of the data type the pointer points to. That is, if p is
declared with pointer type* p, then p + i will change the value of p (an address) by i*sizeof(type) (in
bytes). If there is a line *p = *p + 1, regular arithmetic will apply unless *p is also a pointer datatype.

Exercise:
Draw out the memory diagram after sequential execution of each of the lines below:

 int main(int argc, char **argv) {
 int x = 410, y = 350; // assume &x = 0x10, &y = 0x14
 int *p = &x; // p is a pointer to an integer
 *p = y;
 p = p + 4;
 p = &y;
 x = *p + 1;
 }

1)

2)

3)

C Bitwise Operators

& 0 1 ← AND (&) outputs a 1 only when both input bits are 1. | 0 1

0 0 0 0 0 1

1 0 1 OR (|) outputs a 1 when either input bit is 1. → 1 1 1

^ 0 1 ← XOR (^) outputs a 1 when either input is exclusively 1. ~

0 0 1 0 1

1 1 0 NOT (~) outputs the opposite of its input. → 1 0

Masking is very commonly used with bitwise operations. A mask is a binary constant used to manipulate another
bit string in a specific manner, such as setting specific bits to 1 or 0.

Exercises:

1) [Autumn 2019 Midterm Q1B] If signed char a = 0x88, complete the bitwise C statement so that b =
0xF1. The first blank should be an operator and the second blank should be a numeral.

b = a ^ 0x79

2) Implement the following C function using control structures and bitwise operators.

// returns the number of pairs of bits that are the

// opposite of each other (i.e. 0 and 1 or 1 and 0)

//

// bits are "paired" by taking adjacent bits

// starting at the lsb (0) and pairs do not overlap.

// For example, there are 16 distinct pairs in a 32-bit integer

int num_pairs_opposite(int x) {

 int count = 0;

 for (int i = 0; i < 16; i++) { // 32 bits in an integer

 int bit0 = x & 1;

 int bit1 = (x >> 1) & 1;

 count += bit0 ^ bit1;

 x >>= 2;

 }

 return count;

}

Signed Integers with Two’s Complement
Two’s complement is the standard for representing signed integers:

● The most significant bit (MSB) has a negative value; all others have positive values (same as unsigned)

● Binary addition is performed the same way for signed and unsigned

● The bit representation for the negative value (additive inverse) of a
Two’s Complement number can be found by:

 flipping all the bits and adding 1 (i.e. −𝑥 = ~𝑥 + 1).

The “number wheel” showing the relationship between 4-bit numerals and
their Two’s Complement interpretations is shown on the right:

● The largest number is 7 whereas the smallest number is -8

● There is a nice symmetry between numbers and their negative
counterparts except for -8

Exercises:

1) If we have 8 bits to represent integers, answer the following questions:

a. What is the largest integer? The largest integer + 1? The most negative integer? If it doesn’t apply,
write n/a.

Unsigned:

 Largest: 1111 1111

Largest + 1: 0000 0000

Most Negative: n/a

Two’s Complement:

 Largest: 0111 1111

Largest + 1: 1000 0000

Most Negative: 1000 0000

b. How do you represent (if possible) the following numbers: 39, -39, 127?

Unsigned:

 39: 0010 0111

-39: Impossible

127: 0111 1111

Two’s Complement:

 39: 0010 0111

-39: 1101 1001

127: 0111 1111

2) [Autumn 2017 Final M1A] Take the 32-bit numeral 0xC0800000. Circle the number representation below that

has the most negative value for this numeral.

Sign & Magnitude Two’s Complement Unsigned

Unsigned: Can only represent positive numbers.
Sign & Mag: Negative number with magnitude 100 0000 10...02.
Two’s: Negative number with magnitude 011 1111 10...02 (flip bits + 1).

3) [Winter 2018 Midterm 1C] Given the 4-bit bit vector 0b1101, what is its value in decimal (base 10)? Circle your

answer.

13 -3 -5 Undefined

Need to specify if we want unsigned, sign & magnitude, two’s complement, etc.

