
CSE 351 Section 2
Pointers, Bitwise, Ints

Autumn 2022

Administrivia
● Lab 1a due (Monday 10/10 11:59 PM)

○ Give yourself time to go into Thursday, Friday, and Monday OH if needed
○ Homework 4 also due Monday

● Homework due every day we have lecture
○ Unlimited attempts
○ Homework 3 due (Friday 10/07 11:59 PM)
○ Homework 4 due (Monday 10/10 11:59 PM)
○ More throughout next week

Pointers

Pointer Operations
&x

Gives the memory address of the
variable x, rather than its value.

*p
Give the value at address p, rather
than the value p itself. We often call
this “dereferencing.”

Say we had a variable x with the value 0x15F, stored at 0x400. Then:

● The expression &x would evaluate to 0x400
● The expression x would evaluate to 0x15F
● The expression *x would evaluate to (the value stored at address 0x15F)

Pointer Arithmetic
In C, arithmetic on pointers (++, +, --, -) is scaled by the size of the data type the
pointer points to. Consider p declared with pointer type* p;

● The expression p = p + i will change the value of p (an address) by
i*sizeof(type) (in bytes).

● By contrast, the line *p = *p + 1 will perform regular arithmetic unless
*p is also of a pointer data type.

What About Arrays?
int y[10];
int *z;
z = y;

y[2] = 5;
z[2] = 5;
*(z + 2) = 5;

Arrays in C are contiguous chunks
of memory, but they have a special
relationship with pointers.

If we have an array variable, it
functions like a constant pointer to
the first element in the array (note:
not always! e.g. sizeof)

We will discuss arrays in more
detail in a future section!

These are
equivalent!

Example #1
int x;
int *ptr;
ptr = &x;
x = 5;
*ptr = 200;
ptr += 2;

Consider the code to the left. How
can we represent the result after
each line diagrammatically?

Example #1
int x;
int *ptr;
ptr = &x;
x = 5;
*ptr = 200;
ptr += 2;

Declare two variables, an int and a
pointer to an int.

Note that neither is initialized!
We’ve set aside space for the
variables but they’re full of mystery
data.

ptr x

Example #1
int x;
int *ptr;
ptr = &x;
x = 5;
*ptr = 200;
ptr += 2;

We use the address-of operator to
assign the address where the
variable x is stored to ptr.

Remember, a pointer is just a
variable which holds an address!

ptr x

Example #1
int x;
int *ptr;
ptr = &x;
x = 5;
*ptr = 200;
ptr += 2;

Now we assign x a value.

5

ptr x

Example #1
int x;
int *ptr;
ptr = &x;
x = 5;
*ptr = 200;
ptr += 2;

Now we assign x a value.

5

ptr x

Example #1
int x;
int *ptr;
ptr = &x;
x = 5;
*ptr = 200;
ptr += 2;

Dereference ptr and assign a value
at the location pointed to. This is
the location where x is, so we’ve
changed the value of x!

200

ptr x

Example #1
int x;
int *ptr;
ptr = &x;
x = 5;
*ptr = 200;
ptr += 2;

Increment ptr by 2. Now that we’re
manipulating a pointer variable, we
perform pointer arithmetic. The
value of x does not change.

200

ptr x

? ?

ptr incremented by 8 bytes

8 == 2 * sizeof(int)

Exercise #1
int main(int argc, char **argv) {

int x = 410, y = 350; // assume &x = 0x10, &y = 0x14
int *p = &x; // p is a pointer to an integer
*p = y;
p = p + 4;
p = &y;
x = *p + 1;

} You try! “Exercise”- first page of the
section handout

Bitwise Operators

Bitwise Operators in C
These perform operations on each bit independently in a value.

NOT: ~x

0 1

1 0

“Flips” all bits

AND: x & y
0 1

0 0 0

1 0 1

1 iff both bits 1

OR: x | y
0 1

0 0 1

1 1 1

1 iff either or both 1

XOR: x ^ y
0 1

0 0 1

1 1 0

1 iff exactly one is 1

Bitwise Operators in C

AND: x & y
x y x & y

0 0 0

0 1 0

1 0 0

1 1 1

1 iff both bits 1

These perform operations on each bit independently in a value.

NOT: ~x
x ~x

0 1

1 0

“Flips” all bits

OR: x | y
x y x | y

0 0 0

0 1 1

1 0 1

1 1 1

1 iff either or both 1

XOR: x ^ y
x y x ^ y

0 0 0

0 1 1

1 0 1

1 1 0

1 iff exactly one is 1

Bitwise vs Logical
Bitwise operators are not the same as logical operators (!, &&, ||).

While they perform similar “logical” operations (AND, OR, NOT), bitwise
operators transform the individual bits of a value, whereas logical operators
are used in boolean expressions and treat entire values as either true or false.

For example, 0xA & 0x5 = 0x0, but 0xA && 0x5 = 0x1.

 0xA = 0b1010
 & 0x5 = 0b0101
 0x0 = 0b0000

 0xA = 0b1010
&& 0x5 = 0b0101
 0x1 = 0b0001

Masking Example
Masking is using a specific bit vector and operator to change data or extract
information.

How would you replace the least significant byte of x with 0xAA? For example:
0x2134 should become 0x21AA.

1. Zero out the LS byte with an AND mask.
● x = x & ~0xFF (or x &= ~0xFF)

1. Use an OR to set the LS byte.
● x = x | 0xAA (or x |= 0xAA)

x & 0 = 0 x & 1 = x
x | 0 = x x | 1 = 1
x ^ 0 = x x ^ 1 = ~x

Masking Example
Masking is using a specific bit vector and operator to change data or extract
information.

How would you replace the least significant byte of x with 0xAA? For example:
0x2134 should become 0x21AA.

1. Zero out the LS byte with an AND mask.
● x = x & ~0xFF (or x &= ~0xFF)

1. Use an OR to set the LS byte.
● x = x | 0xAA (or x |= 0xAA)

0x2134 0010 0001 0011 0100

& ~0xFF 1111 1111 0000 0000

0010 0001 0000 0000

| 0xAA 0000 0000 1010 1010

0x21AA 0010 0001 1010 1010

Exercise 1
If signed char a = 0x88, complete the bitwise C statement so that b =
0xF1. The first blank should be an operator and the second should be a
numeral.

b = a _____ 0x ______

 a = 0b10001000

0xF1 = 0b11110001

Exercise 2
// returns the number of pairs of bits that are the opposite of each other
// (i.e. 0 and 1 or 1 and 0). Bits are "paired" by taking adjacent bits
// starting at the lsb (0) and pairs do not overlap. For example, there are 16
// distinct pairs in a 32-bit integer.
// eg: 00 11 01 00 11 10 should return 2 (note that int type is much longer)

int num_pairs_opposite(int x) {
 int count = 0;
 for (int i = 0; i < 8 * sizeof(int) / 2; i++) {
 // fill in the for loop!

 }
 return count;
}

Integers

What’s Two’s Complement?
A way of representing signed integers (positive or negative)

Similar to unsigned integers, except the most significant bit has negative
“weight” (but equivalent magnitude)

For instance, to represent -120 in eight bits, we would store:

1 0 0 0 1 0 0 0

- 128 + 0 + 0 + 0 + 8 + 0 + 0 + 0 = -120

Why Two’s Complement?
We use two’s complement because it has many
handy properties:

● Addition and subtraction are performed
the same way as unsigned

● Positive numbers are represented the
same way as unsigned

● Single zero (compare sign-magnitude)
● The representation of 0 is all zeroes

(0b0...0)
● Roughly the same number of negative and

positive integers

Negation
If we want to
negate a two’s
complement
integer, we flip
every bit and add
1:

-x = ~x + 1

1 1 0 0 0 1 0 0
-128 64 0 0 0 4 0 0 -60

0 0 1 1 1 0 1 1
0 0 32 16 8 0 2 1 59

0 0 1 1 1 1 0 0
0 0 32 16 8 4 0 0 60

Exercise 1a
What is the largest 8-bit integer? What happens when we add 1? What is the
most negative integer we can represent?

Unsigned Two’s Complement

0b11111111 (255) 0b01111111 (127)

0b00000000 (0) 0b10000000 (-128)

N/A -128

Largest:

Largest + 1:

Most Negative:

Largest:

Largest + 1:

Most Negative:

Exercise 1b
What are the 8-bit representations of the following numbers?

Unsigned Two’s Complement

 39: 0b00100111 0b00100111

-39: Can’t do it! 0b11011001

127: 0b01111111 0b01111111

Remember! -x = ~x + 1

Exercise 2
Take the 32-bit numeral 0xC0800000. Circle the number representation below
that has the most negative value for this numeral.

Sign & Magnitude Two’s Complement Unsigned

Exercise 3
Given the 4-bit bit vector 0b1101, what is its value in decimal (base 10)? Circle
your answer.

13 -3 -5 Undefined

