CSE 351 Section 1

Binary, C Fall 2022

Introductions

Icebreaker Time!

- Let's get to know each other!
- <activity description and instructions>

Binary and Hexadecimal

- The (decimal) value of the digit *d* in position *i* in base *b* is: *d x bⁱ*
 - Digits are numbered starting from 0 from right-to-left
- Pay special attention to base indicators
 - Subscripts: 8, 10₂, BA₁₆
 - Prefixes: 0b (binary), 0x (hex)
- Common pitfalls
 - Arithmetic in hex
 - Digit widths and leading zeros

Binary	Decimal	Hex
0b0000	0	0x0
0b0001	1	0x1
0b0010	2	0x2
0b0011	3	0x3
0b0100	4	0x4
0b0101	5	0x5
0b0110	6	0x6
0b0111	7	0x7
0b1000	8	0x8
0b1001	9	0x9
0b1010	10	0xA
0b1011	11	0xB
0b1100	12	0xC
0b1101	13	0xD
0b1110	14	0xE
0b1111	15	0xF

Converting TO Decimal

- Use the formula: *d* **x** *b***^{***i***}**
- Let's try it: Convert 345₈ into decimal:

Converting FROM Decimal

- Remember: write down powers of the base, it's like long-division
- Let's try it: Convert 234 into base 7 (powers of 7 are 1, 7, 49):

Converting Binary TO Hexadecimal

- Convert each group of 4 binary digits into one hex digit
- Let's try it: Translate 0b111100 into hex:

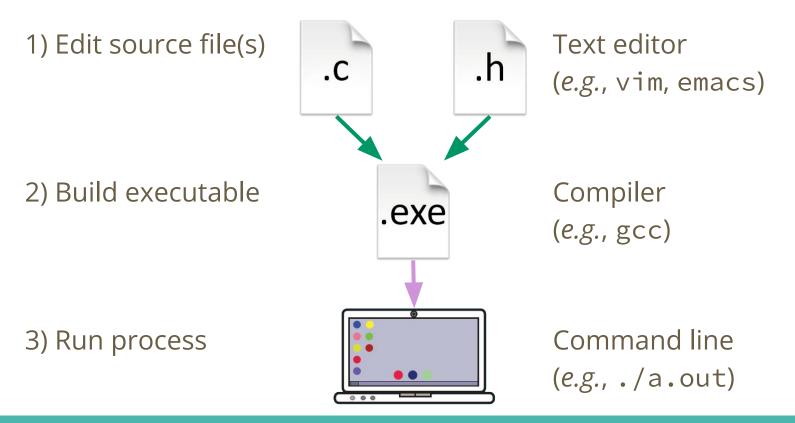
Binary	Decimal	Hex
0b0000	0	0x0
0b0001	1	0x1
0b0010	2	0x2
0b0011	3	0x3
0b0100	4	0x4
0b0101	5	0x5
0b0110	6	0x6
0b0111	7	0x7
0b1000	8	0x8
0b1001	9	0x9
0b1010	10	0xA
0b1011	11	0xB
0b1100	12	0xC
0b1101	13	0xD
0b1110	14	0xE
0b1111	15	0xF

Converting Binary FROM Hexadecimal

- Convert each hex digit into binary
- Let's try it: Translate 0x1AB into binary:

Binary	Decimal	Hex
0b0000	0	0x0
0b0001	1	0x1
0b0010	2	0x2
0b0011	3	0x3
0b0100	4	0x4
0b0101	5	0x5
0b0110	6	0x6
0b0111	7	0x7
0b1000	8	0x8
0b1001	9	0x9
0b1010	10	0xA
0b1011	11	0xB
0b1100	12	0xC
0b1101	13	0xD
0b1110	14	0xE
0b1111	15	0xF

Binary Practice Slide (Worksheet)


Binary	Decimal	Hexadecimal
0b10010011		
		0x16
	63	
0b100100		
		0xC30
	0	
		0xBAD
	437	

Binary	Decimal	Hexadecimal
0b10010011	$2^7 + 2^4 + 2^1 + 2^0 = 147$	0x93
0b10110	$116^1 + 616^0 = 22$	0x16
0b111111	63	0x3F
0b100100	$2^5 + 2^2 = 36$	0x24
0b110000110000	$1216^2 + 316^1 = 3120$	0xC30
0b0	0	0x0
0b101110101101	$1116^2 + 1016^1 + 1316^0 = 2989$	0xBAD
0b110110101	437	0x1B5

Number Representation

- A single numeral can *represent* many different values/things as long as you know the proper *encoding scheme* The encodings may be arbitrarily chosen by the designer
- Representation limits: need to use a sufficient number of bits to cover the entire range of values/things to be represented
- Some encoding schemes we will cover in this class:
 - Unsigned and signed integers
 - Floating point numbers
 - Characters
 - Data locations

Compilation Options

Compilation command:

gcc -Wall -g -std=c18 -o foo foo.c

- -W turns on compiler warnings (all of them)
- -g turns on debugging symbols
- -std specifies which "standard" of C we are using
- -o changes the name of the resulting executable
- foo.c is the source file being compiled

Compiling and Executing Slide (Ed Lessons)

printf Format Specifiers

The printf function prototype:

int printf(const char* format, ...);

- %d for signed integers
- %u for unsigned integers
- %f for floating point numbers
- %s for "string"
- %x for hexadecimal
- %p for pointer

printf Slide (Ed Lessons)