
CSE351, Autumn 2022L29: Course Wrap-Up

Course Wrap-Up
CSE 351 Autumn 2022

Instructor: Teaching Assistants:
Justin Hsia Angela Xu Arjun Narendra Armin Magness

Assaf Vayner Carrie Hu Clare Edmonds
David Dai Dominick Ta Effie Zheng
James Froelich Jenny Peng Kristina Lansang
Paul Stevans Renee Ruan Vincent Xiao

https://xkcd.com/1760/

https://xkcd.com/1760/

CSE351, Autumn 2022L29: Course Wrap-Up

Relevant Course Information

❖ Please fill out the course evaluation!

▪ Evaluations close Sunday, December 11th at 11:59 pm
• Not viewable until after grades are submitted

▪ See Ed post #1267 for links (separate for Lecture and
Section)

▪ We take these seriously and use them to improve our
teaching and this class!

❖ Final Exam: take-home Dec. 12-14

▪ Review Session: tonight, 3:30-5:30 pm on Zoom & CSE2 G10

▪ Similar structure to Midterm, including Gilligan’s Island Rule

▪ Final review packet and reference sheet on website

CSE351, Autumn 2022L29: Course Wrap-Up

Today

❖ End-to-end Review

▪ What happens after you write your source code?
• How code becomes a program

• How your computer executes your code

❖ Victory lap and high-level concepts (🔑 points)

▪ More useful for “5 years from now” than “the final”

❖ Question time

3

CSE351, Autumn 2022L29: Course Wrap-Up

C: The Low-Level High-Level Language

❖ C is a “hands-off” language that “exposes” more of
hardware (especially memory)

▪ Weakly-typed language that stresses data as bits
• Anything can be represented with a number!

▪ Unconstrained pointers can hold address of anything
• And no bounds checking – buffer overflow possible!

▪ Efficient by leaving everything up to the programmer

▪ “C is good for two things: being beautiful and creating
catastrophic 0days in memory management.”
(https://medium.com/message/everything-is-broken-81e5f33a24e1)

https://medium.com/message/everything-is-broken-81e5f33a24e1

CSE351, Autumn 2022L29: Course Wrap-Up

C Data Types

❖ C Primitive types

▪ Fixed sizes and alignments

▪ Characters (char), Integers (short, int, long),
Floating Point (float, double)

❖ C Data Structures

▪ Arrays – contiguous chunks of memory
• Multidimensional arrays = still one continuous chunk, but row-major

• Multi-level arrays = array of pointers to other arrays

▪ Structs – structured group of variables
• Struct fields are ordered according to declaration order

• Internal fragmentation: space between members to satisfy member
alignment requirements (aligned for each primitive element)

• External fragmentation: space after last member to satisfy overall struct
alignment requirement (largest primitive member)

CSE351, Autumn 2022L29: Course Wrap-Up

C and Memory

❖ Using C allowed us to examine how we store and
access data in memory

▪ Endianness (only applies to memory)
• Is the first byte (lowest address) the least significant (little endian) or

most significant (big endian) of your data?

▪ Array indices and struct fields result in calculating proper
addresses to access

❖ Consequences of your code:

▪ Affects performance (locality)

▪ Affects security

❖ But to understand these effects better, we had to
dive deeper…

CSE351, Autumn 2022L29: Course Wrap-Up

How Code Becomes a Program

7

text

text

binary

binary

Compiler (gcc –Og -S)

Assembler (gcc -c or as)

Linker (gcc or ld)

C source code

Assembly files

Object files

Executable program

Static libraries

Loader (the OS)

Hardware

CSE351, Autumn 2022L29: Course Wrap-Up

C Language

Instruction Set Architecture

8

x86-64

Intel Pentium 4

Intel Core 2

Intel Core i7

AMD Opteron

AMD Athlon

GCC

ARMv8
(AArch64/A64)

ARM Cortex-A53

Apple A7

Clang

Your
program

Program
B

Program
A

CompilerSource code Architecture

Different applications
or algorithms

Perform optimizations,
generate instructions

Different
implementations

Hardware

Instruction set

CISC

RISC

CSE351, Autumn 2022L29: Course Wrap-Up

CPU

Assembly Programmer’s View

❖ Programmer-visible state
▪ PC: the Program Counter (%rip in x86-64)

• Address of next instruction

▪ Named registers

• Together in “register file”

• Heavily used program data

▪ Condition codes

• Store status information about most recent
arithmetic operation

• Used for conditional branching 9

PC
Registers

Memory

• Code
• Data
• Stack

Addresses

Data

InstructionsCondition
Codes

❖ Memory
▪ Byte-addressable array

▪ Huge virtual address
space

▪ Private, all to yourself…

CSE351, Autumn 2022L29: Course Wrap-Up

CPU

Program’s View

10

%rip
Registers

Memory

Condition
Codes

Instructions

Literals

Static Data

Dynamic Data
(Heap)

Stack

Large constants
(e.g., “example”)

static variables
(global variables in C)

variables allocated
with new or malloc

local variables;
procedure context

0

2N-1

High addresses

Low addresses

CSE351, Autumn 2022L29: Course Wrap-Up

Program’s View

❖ Instructions
▪ Data movement

• mov, movz, movz

• push, pop

▪ Arithmetic
• add, sub, imul

▪ Control flow
• cmp, test

• jmp, je, jgt, ...

• call, ret

❖ Operand types
▪ Literal: $8

▪ Register: %rdi, %al

▪ Memory: D(Rb,Ri,S) = D+Rb+Ri*S

• lea: not a memory access!

11

Memory

Instructions

Literals

Static Data

Dynamic Data
(Heap)

Stack

Large constants
(e.g., “example”)

static variables
(global variables in C)

variables allocated
with new or malloc

local variables;
procedure context

0

2N-1

High addresses

Low addresses

CSE351, Autumn 2022L29: Course Wrap-Up

Program’s View

❖ Procedures
▪ Essential abstraction

▪ Recursion…

❖ Stack discipline
▪ Stack frame per call

▪ Local variables

❖ Calling convention
▪ How to pass arguments

• Diane’s Silk Dress Costs $89

▪ How to return data

▪ Return address

▪ Caller-saved / callee-saved registers

12

Memory

Instructions

Literals

Static Data

Dynamic Data
(Heap)

Stack

Large constants
(e.g., “example”)

static variables
(global variables in C)

variables allocated
with new or malloc

local variables;
procedure context

0

2N-1

High addresses

Low addresses

CSE351, Autumn 2022L29: Course Wrap-Up

Program’s View

❖ Heap data
▪ Variable size

▪ Variable lifetime

❖ Allocator
▪ Balance throughput and memory

utilization

▪ Data structures to keep track of
free blocks

❖ Garbage collection
▪ Must always free memory

▪ Garbage collectors help by finding
anything reachable

▪ Failing to free results in
memory leaks

13

Memory

Instructions

Literals

Static Data

Dynamic Data
(Heap)

Stack

Large constants
(e.g., “example”)

static variables
(global variables in C)

variables allocated
with new or malloc

local variables;
procedure context

0

2N-1

High addresses

Low addresses

CSE351, Autumn 2022L29: Course Wrap-Up

But remember… it’s all an illusion! 😮

❖ Context switches
▪ Don’t really have CPU to yourself

❖ Virtual Memory
▪ Don’t really have 264 bytes of

memory all to yourself

▪ Allows for indirection (remap
physical pages, sharing…)

14

CPU

%rip
Registers

Memory

Condition
Codes

Instructions

Literals

Static Data

Dynamic Data
(Heap)

Stack

Large constants
(e.g., “example”)

static variables
(global variables in C)

variables allocated
with new or malloc

local variables;
procedure context

0

2N-1

High addresses

Low addresses

CSE351, Autumn 2022L29: Course Wrap-Up

Process 3
CPU

%rip
Registers

Memory

Condition
Codes

Instructions

Literals

Static Data

Dynamic Data
(Heap)

Stack

0

2N-1

High addresses

Low
addresses

Hardware

Process 2
CPU

%rip
Registers

Memory

Condition
Codes

Instructions

Literals

Static Data

Dynamic Data
(Heap)

Stack

0

2N-1

High addresses

Low
addresses

But remember… it’s all an illusion! 😮

❖ fork

▪ Creates copy of the process

❖ execv

▪ Replace with new program

❖ wait

▪ Wait for child to die (to reap it and
prevent zombies)

15

Process 1
CPU

%rip
Registers

Memory

Condition
Codes

Instructions

Literals

Static Data

Dynamic Data
(Heap)

Stack

0

2N-1
High addresses

Low
addresses

CSE351, Autumn 2022L29: Course Wrap-Up

Virtual Memory

16

MMU
Cache/

Memory

PA

Data

CPU
VA

CPU Chip

PTE

1

2

4

5

TLB

VPN 3

❖ Address Translation
▪ Every memory access must first be converted from virtual to physical

▪ Indirection: just change the address mapping when switching processes

▪ Luckily, TLB (and page size) makes it pretty fast

CSE351, Autumn 2022L29: Course Wrap-Up

But Memory is Also a Lie! 😮

❖ Illusion of one flat array of bytes
▪ But caches invisibly make accesses to physical addresses faster!

❖ Caches
▪ Associativity tradeoff with miss rate and access time

▪ Block size tradeoff with spatial and temporal locality

▪ Cache size tradeoff with miss rate and cost

17

“Memory”

CPU

%rip
Registers

Condition
Codes

Main Memory
DRAM

L3
Cache

L2
Cache

L1
Cache

CSE351, Autumn 2022L29: Course Wrap-Up

Memory Hierarchy

18

registers

on-chip L1
cache (SRAM)

main memory
(DRAM)

local secondary storage
(local disks)

Larger,
slower,
cheaper
per byte

remote secondary storage
(distributed file systems, web servers)

off-chip L2
cache (SRAM)

Smaller,
faster,
costlier
per byte

<1 ns

1 ns

5-10 ns

100 ns

150,000 ns

10,000,000 ns
(10 ms)

1-150 ms

SSD

Disk

5-10 s

1-2 min

15-30 min

31 days

66 months = 5.5 years

1 - 15 years

CSE351, Autumn 2022L29: Course Wrap-Up

Victory Lap

❖ A victory lap is an extra trip around
the track

▪ By the exhausted victors (that’s us) ☺

❖ Review course goals

▪ Put everything in perspective

CSE351, Autumn 2022L29: Course Wrap-Up

Big Theme 1: Abstractions and Interfaces

❖ Computing is about abstractions

▪ (but we can’t forget reality)

❖ What are the abstractions that we use?

❖ What do you need to know about them?

▪ When do they break down and you have to peek under the
hood?

▪ What bugs can they cause and how do you find them?

❖ How does the hardware relate to the software?

▪ Become a better programmer and begin to understand the
important concepts that have evolved in building ever more
complex computer systems

20

CSE351, Autumn 2022L29: Course Wrap-Up

Little Theme 1: Representation/Encoding

❖ All digital systems represent everything as 0s and 1s
▪ The 0 and 1 are really two different voltage ranges in the wires

▪ Or magnetic positions on a disc, or hole depths on a DVD, or even DNA…

❖ “Everything” includes:
▪ Numbers – integers and floating point

▪ Characters – the building blocks of strings

▪ Instructions – the directives to the CPU that make up a program

▪ Pointers – addresses of data objects stored away in memory

❖ Encodings are stored throughout a computer system
▪ In registers, caches, memories, disks, etc.

❖ They all need addresses (a way to locate)
▪ Find a new place to put a new item

▪ Reclaim the place in memory when data no longer needed

21

CSE351, Autumn 2022L29: Course Wrap-Up

Little Theme 2: Translation

❖ There is a big gap between how we think about
programs and data and the 0s and 1s of computers

▪ Need languages to describe what we mean

▪ These languages need to be translated one level at a time

❖ We know Java as a programming language

▪ Have to work our way down to the 0s and 1s of computers

▪ Try not to lose anything in translation!

▪ We encountered C language, assembly language, and
machine code (for the x86 family of CPU architectures)

22

CSE351, Autumn 2022L29: Course Wrap-Up

Little Theme 3: Control Flow

❖ How do computers orchestrate everything they are doing?

❖ Within one program:
▪ How do we implement if/else, loops, switches?

▪ What do we have to keep track of when we call a procedure, and then
another, and then another, and so on?

▪ How do we know what to do upon “return”?

❖ Across programs and operating systems:
▪ Multiple user programs

▪ Operating system has to orchestrate them all

• Each gets a share of computing cycles

• They may need to share system resources (memory, I/O, disks)

▪ Yielding and taking control of the processor

• Voluntary or “by force”?

23

CSE351, Autumn 2022L29: Course Wrap-Up

Big Theme 2: Design Values

❖ Design choices are a combination of goals and context

▪ Based on history and the society of the times
• Usually assumptions about normativity or

“common case”

▪ Imbued with the values of the creators
(and/or those with power)
• Think critically about what you are told & sold!

❖ Nothing is future-proof

▪ The House of Computing needs remodeling!
• Built on the values of efficiency, profit, and militarism

▪ Need to reexamine your heading and vision periodically
• Check your metrics and definition of success

24

Programming Languages
& Libraries

Operating System

Hardware

Physics

Transistors, Gates, Digital Systems

Even more applications

Applications

CSE351, Autumn 2022L29: Course Wrap-Up

Course Perspective

❖ CSE351 will make you a more informed programmer
▪ Purpose is to show how software really works

▪ Understanding the underlying system makes you more effective

• Better debugging

• Better basis for evaluating performance

• How multiple activities work in concert (e.g., OS and user programs)

▪ Not just a course for hardware enthusiasts!

• What every CSE major needs to know (plus many more details)

• See many patterns that come up over and over in computing (like
caching)

▪ “Stuff everybody learns and uses and forgets not knowing”

❖ CSE351 presents a world-view that will empower you
▪ The intellectual and software tools to understand the trillions+ of 1s and

0s that are “flying around” when your program runs
25

CSE351, Autumn 2022L29: Course Wrap-Up

Can You Now Explain These to a Friend?

❖ Which of the following did you actually find the most
interesting to learn about? (vote in Ed Lessons)

a) What is a GFLOP and why is it used in computer benchmarks?

b) How and why does running many programs for a long time
eat into your memory (RAM)?

c) What is stack overflow and how does it happen?

d) Why does your computer slow down when you run out of
disk space?

e) What was the flaw behind the original Internet worm and the
Heartbleed bug?

f) What is the meaning behind the different CPU specifications?
(e.g., # of cores, # and size of cache, supported memory types)

26

CSE351, Autumn 2022L29: Course Wrap-Up

The Very First Comic of the Quarter

http://xkcd.com/676/

http://xkcd.com/676/

CSE351, Autumn 2022L29: Course Wrap-Up

Courses: What’s Next?

❖ Staying near the hardware/software interface:
▪ CSE369/EE271: Digital Design – basic hardware design using FPGAs

▪ CSE474/EE474: Embedded Systems – software design for
microcontrollers

❖ Systems software
▪ CSE341/CSE413: Programming Languages

▪ CSE332/CSE373: Data Structures and Parallelism

▪ CSE333/CSE374: Systems Programming – building well-structured
systems in C/C++

❖ Looking ahead
▪ CSE401: Compilers (pre-reqs: 332)

▪ CSE451: Operating Systems (pre-reqs: 332, 333)

▪ CSE461: Networks (pre-reqs: 332, 333)

▪ CSE484: Computer Security (pre-reqs: 332, 351)
28

CSE351, Autumn 2022L29: Course Wrap-Up

Thanks for a great quarter!

❖ Huge thanks to your awesome TAs!

❖ Don’t be a stranger!

▪ If interested, I’m teaching CSE333 (Wi23), CSE369 (Sp23),
and EE/CSE371 (Sp23)

▪ If you TA, I co-lead CSE General TA Training

▪ I attend CSE590E: CS Education research seminar

ArminArjunAngela Assaf DavidCarrie Clare Dom

Effie James Jenny Kristina ReneePaul Vincent

CSE351, Autumn 2022L29: Course Wrap-Up

Ask Me Anything

CSE351, Autumn 2022L29: Course Wrap-Up

