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Relevant Course Information

❖ hw25 due Wednesday (12/7)

❖ Lab 5 due next Friday (12/9)

▪ Recommended that you watch the Lab 5 helper videos

❖ No readings for next week’s lectures!

❖ Final Exam:  12/12-14

▪ Similar to midterm; Gilligan’s Island Rule in effect

▪ Final review section on 12/8

▪ Review Session:  Fri, 12/9, evening (time TBD) on Zoom
• More info to be released on Ed Discussion
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Lab 5 Hints

❖ Struct pointers can be used to access field values, 
even if no struct instances have been created – just 
reinterpreting the data in memory

❖ Pay attention to boundary tag data

▪ Size value + 2 tag bits – when do these need to be updated 
and do they have the correct values?

▪ The examine_heap function follows the implicit free list 
searching algorithm – don’t take its output as “truth”

❖ Learn to use and interpret the trace files for testing!!!

❖ A special heap block marks the end of the heap
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Explicit List Summary

❖ Comparison with implicit list:
▪ Block allocation is linear time in number of free blocks instead of all

blocks

• Much faster when most of the memory is full 

▪ Slightly more complicated allocate and free since we need to splice 
blocks in and out of the list

▪ Some extra space for the links (2 extra pointers needed for each free 
block)

• Increases minimum block size, leading to more internal fragmentation

❖ Most common use of explicit lists is in conjunction with 
segregated free lists
▪ Keep multiple linked lists of different size classes, or possibly for 

different types of objects
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Allocation Policy Tradeoffs

❖ Data structure of blocks on lists

▪ Implicit (free/allocated), explicit (free), segregated (many 
free lists) – others possible!

❖ Placement policy:  first-fit, next-fit, best-fit

▪ Throughput vs. amount of fragmentation

❖ When do we split free blocks?

▪ How much internal fragmentation are we willing to tolerate?
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More Info on Allocators

❖ D. Knuth, “The Art of Computer Programming”, 2nd

edition, Addison Wesley, 1973

▪ The classic reference on dynamic storage allocation

❖ Wilson et al, “Dynamic Storage Allocation: A Survey 
and Critical Review”, Proc. 1995 Int’l Workshop on 
Memory Management, Kinross, Scotland, Sept, 1995.

▪ Comprehensive survey

▪ Available from CS:APP student site (csapp.cs.cmu.edu)
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Memory Allocation

❖ Dynamic memory allocation

▪ Introduction and goals

▪ Allocation and deallocation (free)

▪ Fragmentation

❖ Explicit allocation implementation

▪ Implicit free lists

▪ Explicit free lists (Lab 5)

▪ Segregated free lists

❖ Implicit deallocation:  garbage collection

❖ Common memory-related bugs in C
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Reading Review

❖ Terminology:

▪ Garbage collection:  mark-and-sweep

▪ Memory-related issues in C

❖ Questions from the Reading?

8



CSE351, Autumn 2022L26:  Memory Allocation III

Wouldn’t it be nice…

❖ If we never had to free memory?

❖ Do you free objects in Java?

▪ Reminder:  implicit allocator
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Garbage Collection (GC)

❖ Garbage collection:  automatic reclamation of heap-allocated 
storage – application never explicitly frees memory

❖ Common in implementations of functional languages, scripting 
languages, and modern object oriented languages:
▪ Lisp, Racket, Erlang, ML, Haskell, Scala, Java, C#, Perl, Ruby, Python, Lua, 

JavaScript, Dart, Mathematica, MATLAB, many more…

❖ Variants (“conservative” garbage collectors) exist for C and C++
▪ However, cannot necessarily collect all garbage
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void foo() {

int* p = (int*) malloc(128);

return;  /* p block is now garbage! */

}

(Automatic Memory Management)
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Garbage Collection

❖ How does the memory allocator know when memory 
can be freed? 

▪ In general, we cannot know what is going to be used in the 
future since it depends on conditionals

▪ But, we can tell that certain blocks cannot be used if they 
are unreachable (via pointers in registers/stack/globals)

❖ Memory allocator needs to know what is a pointer 
and what is not – how can it do this?

▪ Sometimes with help from the compiler
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Memory as a Graph

❖ We view memory as a directed graph
▪ Each allocated heap block is a node in the graph

▪ Each pointer is an edge in the graph

▪ Locations not in the heap that contain pointers into the heap are called 
root nodes (e.g., registers, stack locations, global variables)
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A node (block) is reachable if there is a path from any root to that node
Non-reachable nodes are garbage (cannot be needed by the application)

Root nodes

Heap nodes

not reachable
(garbage)

reachable
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Garbage Collection

❖ Dynamic memory allocator can free blocks if there are 
no pointers to them

❖ How can it know what is a pointer and what is not?

❖ We’ll make some assumptions about pointers:

▪ Memory allocator can distinguish pointers from non-
pointers

▪ All pointers point to the start of a block in the heap

▪ Application cannot hide pointers 
(e.g., by coercing them to a long, and then back again)
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Classical GC Algorithms

❖ Mark-and-sweep collection (McCarthy, 1960)
▪ Does not move blocks (unless you also “compact”)

❖ Reference counting (Collins, 1960)
▪ Does not move blocks (not discussed)

❖ Copying collection (Minsky, 1963)
▪ Moves blocks (not discussed)

❖ Generational Collectors (Lieberman and Hewitt, 1983)

▪ Most allocations become garbage very soon, so

focus reclamation work on zones of memory recently allocated.

❖ For more information:
▪ Jones, Hosking, and Moss, The Garbage Collection Handbook: The Art of 

Automatic Memory Management, CRC Press, 2012.

▪ Jones and Lin, Garbage Collection: Algorithms for Automatic Dynamic 
Memory, John Wiley & Sons, 1996.
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Mark and Sweep Collecting

❖ Can build on top of malloc/free package
▪ Allocate using malloc until you “run out of space”

❖ When out of space:
▪ Use extra mark bit in the header of each block

▪ Mark: Start at roots and set mark bit on each reachable block

▪ Sweep: Scan all blocks and free blocks that are not marked

15

Before mark

root

After mark Mark bit set

After sweep freefree

Arrows are NOT 
free list pointers
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Assumptions For a Simple Implementation

❖ Application can use functions to allocate memory:
▪ b=new(n) returns pointer, b, to new block with all locations cleared

▪ b[i] read location i of block b into register

▪ b[i]=v write v into location i of block b

❖ Each block will have a header word (accessed at b[-1])

❖ Functions used by the garbage collector:
▪ is_ptr(p) determines whether p is a pointer to a block

▪ length(p) returns length of block pointed to by p, not including
header

▪ get_roots() returns all the roots

16

Non-testable 
Material
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Mark

❖ Mark using depth-first traversal of the memory graph
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ptr mark(ptr p) {               // p: some word in a heap block

if (!is_ptr(p))    return;   // do nothing if not pointer

if (markBitSet(p)) return;   // check if already marked

setMarkBit(p);               // set the mark bit

for (i=0; i<length(p); i++)  // recursively call mark on

mark(p[i]);               //    all words in the block

return;

}      

Before mark

root

After mark Mark bit set

Non-testable 
Material
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Sweep

❖ Sweep using sizes in headers
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ptr sweep(ptr p, ptr end) {       // ptrs to start & end of heap

while (p < end) {  // while not at end of heap

if (markBitSet(p))          // check if block is marked

clearMarkBit(p);         // if so, reset mark bit

else if (allocateBitSet(p)) // if not marked, but allocated

free(p);                 // free the block

p += length(p);             // adjust pointer to next block

}

}     

Non-testable 
Material

After mark Mark bit set

After sweep freefree
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Conservative Mark & Sweep in C

❖ Would mark & sweep work in C?
▪ is_ptr determines if a word is a pointer by checking if it points to an 

allocated block of memory

▪ But in C, pointers can point into the middle of allocated blocks 
(not so in Java)

• Makes it tricky to find all allocated blocks in mark phase

▪ There are ways to solve/avoid this problem in C, but the resulting 
garbage collector is conservative:

• Every reachable node correctly identified as reachable, but some unreachable 
nodes might be incorrectly marked as reachable

▪ In Java, all pointers (i.e., references) point to the starting address of an 
object structure – the start of an allocated block

19
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ptr
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Memory-Related Perils and Pitfalls in C
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Slide
Program stop

possible? Fixes:

A) Dereferencing a non-pointer

B) Freed block – access again

C) Freed block – free again

D) Memory leak – failing to free memory

E) No bounds checking

F) Reading uninitialized memory

G) Referencing nonexistent variable

H) Wrong allocation size
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Find That Bug!  (Slide 21)
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char s[8];

int i;

gets(s);  /* reads "123456789" from stdin */ 

Error Prog stop Fix:
Type: Possible?
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Find That Bug!  (Slide 22)
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int* foo() {

int val = 0;

return &val;

}  

Error Prog stop Fix:
Type: Possible?
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Find That Bug!  (Slide 23)

• N and M defined elsewhere (#define)
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int** p;

p = (int**)malloc( N * sizeof(int) );

for (int i = 0; i < N; i++) {

p[i] = (int*)malloc( M * sizeof(int) );

}

Error Prog stop Fix:
Type: Possible?
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Find That Bug!  (Slide 24)

• A is NxN matrix, x is N-sized vector (so product is vector of size N)

• N defined elsewhere (#define)

24

/* return y = Ax */

int* matvec(int** A, int* x) { 

int* y = (int*)malloc( N*sizeof(int) );

int i, j;

for (i = 0; i < N; i++)

for (j = 0; j < N; j++)

y[i] += A[i][j] * x[j];

return y;

}

Error Prog stop Fix:
Type: Possible?
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Find That Bug!  (Slide 25)

❖ The classic scanf bug
▪ int scanf(const char *format)

25

int val;

...

scanf("%d", val);

Error Prog stop Fix:
Type: Possible?
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Find That Bug!  (Slide 26)

26

x = (int*)malloc( N * sizeof(int) );

// manipulate x

free(x);

...

y = (int*)malloc( M * sizeof(int) );

// manipulate y

free(x);

Error Prog stop Fix:
Type: Possible?
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Find That Bug!  (Slide 27)

27

x = (int*)malloc( N * sizeof(int) );

// manipulate x

free(x);

...

y = (int*)malloc( M * sizeof(int) );

for (i=0; i<M; i++)

y[i] = x[i]++;

Error Prog stop Fix:
Type: Possible?
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Find That Bug!  (Slide 28)
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typedef struct L {

int val;

struct L* next;

} list;

void foo() {

list* head = (list*) malloc( sizeof(list) );

head->val = 0;

head->next = NULL;

// create and manipulate the rest of the list

...

free(head);

return;

}

Error Prog stop Fix:
Type: Possible?
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Quick Debugging Note

❖ Staring at code until you think you spot a bug is 
generally not an effective way to debug!

▪ Of course it looks logically correct to you – you wrote it!

▪ Language like C doesn’t abstract away memory – it’s part of 
your program state that you need to keep track of
• Your code will only get longer and more complicated in the future: 

there’s too much to try to keep track of mentally

❖ Instead, start with bad/unexpected behavior to guide 
your search

▪ Memory bugs/“errors” can be especially tricky because they 
often don’t result in explicit errors or program stoppages

29
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Dealing With Memory Bugs

❖ Make use of all of the tools available to you:

▪ Pay attention to compiler warnings and errors

▪ Use debuggers like GDB to track down runtime errors
• Good for bad pointer dereferences, bad with other memory bugs

▪ is a powerful debugging and analysis utility for 
Linux, especially good for memory bugs
• Checks each individual memory reference at runtime (i.e., only 

detects issues with parts of code used in a specific execution)

• Can catch many memory bugs, including bad pointers, reading 
uninitialized data, double-frees, and memory leaks
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What about Java or ML or Python or …?

❖ In memory-safe languages, most of these bugs are 
impossible

▪ Cannot perform arbitrary pointer manipulation

▪ Cannot get around the type system

▪ Array bounds checking, null pointer checking

▪ Automatic memory management

❖ But one of the bugs we saw earlier is possible.  Which 
one?

31
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Memory Leaks with GC

❖ Not because of forgotten — we have GC!

❖ Unneeded “leftover” roots keep objects reachable

❖ Sometimes nullifying a variable is not needed for correctness 
but is for performance

❖ Example: Don’t leave big data structures you’re done with in a 
static field

32

Root nodes

Heap nodes

not reachable
(garbage)

reachable
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Debugging, Revisited

“As soon as we started programming, we found to our 
surprise that it wasn't as easy to get programs right as 
we had thought. Debugging had to be discovered. I can 
remember the exact instant when I realized that a large 
part of my life from then on was going to be spent in 
finding mistakes in my own programs.”

– Memoirs of a Computer Pioneer 
– by Maurice Wilkes
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Debugging Strategies

❖ You’ve got to find what works best for you

❖ Try a lot – your debugging technique should grow 
over time and some techniques will work better for 
different domains

▪ Print debugging

▪ Using a debugger

▪ Visualizations

▪ Generating thorough test cases/suites

▪ Including sensible checks throughout your program

▪ etc.

❖ But this isn’t what we’re here to talk about now…
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Supporting Yourself While Debugging

❖ This is also a learning process!

❖ Why is this necessary (and difficult)?

▪ CS actively encourages prolonged periods of mental 
concentration
• Easy to tune everything else out when you remain immobile just a few 

feet from your screen (and screens are getting bigger)

• Programmers describe sometimes being “in the zone”

• Long coding sessions and late nights are socially and culturally 
encouraged

• Hackathons are designed this way and also encourage you to ignore 
your bodily needs

• Tech companies entice you to stay at work with free food and 
amenities
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Supporting Yourself While Debugging

❖ This is also a learning process!

❖ Why is this necessary (and difficult)?

▪ When your code doesn’t work, it can evoke a lot of different 
negative emotions

▪ A heightened emotional state can impede your thinking 
ability and scope, which can cause you to spiral
• Can interact with imposter syndrome, stereotype threat, and other 

self-esteem issues

▪ As your mood drops, this can also manifest physically in your 
body – bad posture, feeling “tense,” delaying attending to 
your needs or forgetting to altogether
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Supporting Yourself While Debugging

❖ Mindfulness: “The practice of bringing one’s 
attention in the present moment”

▪ Lots of different definitions and nuance, but we’ll stick with 
this broad definition and not the wellness craze

❖ While debugging, try to be mindful of your emotional 
and physical state as well as your current approach

▪ Are you focused on the task at hand or distracted?

▪ Am I calm and/or rested enough to be thinking “clearly?”

▪ How is my posture, breathing, and tenseness?

▪ Do I have any physical needs that I should address?

▪ What approach am I trying and why? Are there alternatives?
37
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Supporting Yourself While Debugging

❖ Try:  set a timer for <your interval of choice> 
(e.g., 15 minutes) to evaluate your state and 
approach

▪ Like the system timer your OS uses for context switching!

❖ If you’re distracted, feeling negative emotions, tense, 
or need to address something, take a break!

▪ You will often find that you’ll make a discovery while on a 
break or at least recover from setbacks

▪ Breaks also vary wildly by individual and situation
• Make sure that you actually feel rested afterward

• e.g., make tea, work out, do chores, watch a show/movie, play games, 
chat with friends, make art
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Supporting Yourself

❖ There are few guarantees for support, besides the 
support that you can give yourself

▪ Get comfortable in your own skin and stand up for yourself

▪ Can also find support from peers, mentors, family, friends

❖ Your wellbeing is much more important than your 
assignment grade, your GPA, your degree, your pride, 
or whatever else is pushing you to finish right now

❖ Don’t attach too much of your self-worth to 
programming and debugging

▪ There’s so much more that makes you a wonderful and 
worthwhile human being!
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