
CSE351, Autumn 2022L26: Memory Allocation III

Memory Allocation III
CSE 351 Autumn 2022

Instructor:
Justin Hsia

Teaching Assistants:
Angela Xu
Arjun Narendra
Armin Magness
Assaf Vayner
Carrie Hu
Clare Edmonds
David Dai
Dominick Ta
Effie Zheng
James Froelich
Jenny Peng
Kristina Lansang
Paul Stevans
Renee Ruan
Vincent Xiao

https://xkcd.com/835/

https://xkcd.com/835/

CSE351, Autumn 2022L26: Memory Allocation III

Relevant Course Information

❖ hw25 due Wednesday (12/7)

❖ Lab 5 due next Friday (12/9)

▪ Recommended that you watch the Lab 5 helper videos

❖ No readings for next week’s lectures!

❖ Final Exam: 12/12-14

▪ Similar to midterm; Gilligan’s Island Rule in effect

▪ Final review section on 12/8

▪ Review Session: Fri, 12/9, evening (time TBD) on Zoom
• More info to be released on Ed Discussion

2

CSE351, Autumn 2022L26: Memory Allocation III

Lab 5 Hints

❖ Struct pointers can be used to access field values,
even if no struct instances have been created – just
reinterpreting the data in memory

❖ Pay attention to boundary tag data

▪ Size value + 2 tag bits – when do these need to be updated
and do they have the correct values?

▪ The examine_heap function follows the implicit free list
searching algorithm – don’t take its output as “truth”

❖ Learn to use and interpret the trace files for testing!!!

❖ A special heap block marks the end of the heap

3

CSE351, Autumn 2022L26: Memory Allocation III

Explicit List Summary

❖ Comparison with implicit list:
▪ Block allocation is linear time in number of free blocks instead of all

blocks

• Much faster when most of the memory is full

▪ Slightly more complicated allocate and free since we need to splice
blocks in and out of the list

▪ Some extra space for the links (2 extra pointers needed for each free
block)

• Increases minimum block size, leading to more internal fragmentation

❖ Most common use of explicit lists is in conjunction with
segregated free lists
▪ Keep multiple linked lists of different size classes, or possibly for

different types of objects

4

CSE351, Autumn 2022L26: Memory Allocation III

Allocation Policy Tradeoffs

❖ Data structure of blocks on lists

▪ Implicit (free/allocated), explicit (free), segregated (many
free lists) – others possible!

❖ Placement policy: first-fit, next-fit, best-fit

▪ Throughput vs. amount of fragmentation

❖ When do we split free blocks?

▪ How much internal fragmentation are we willing to tolerate?

5

CSE351, Autumn 2022L26: Memory Allocation III

More Info on Allocators

❖ D. Knuth, “The Art of Computer Programming”, 2nd

edition, Addison Wesley, 1973

▪ The classic reference on dynamic storage allocation

❖ Wilson et al, “Dynamic Storage Allocation: A Survey
and Critical Review”, Proc. 1995 Int’l Workshop on
Memory Management, Kinross, Scotland, Sept, 1995.

▪ Comprehensive survey

▪ Available from CS:APP student site (csapp.cs.cmu.edu)

6

CSE351, Autumn 2022L26: Memory Allocation III

Memory Allocation

❖ Dynamic memory allocation

▪ Introduction and goals

▪ Allocation and deallocation (free)

▪ Fragmentation

❖ Explicit allocation implementation

▪ Implicit free lists

▪ Explicit free lists (Lab 5)

▪ Segregated free lists

❖ Implicit deallocation: garbage collection

❖ Common memory-related bugs in C

7

CSE351, Autumn 2022L26: Memory Allocation III

Reading Review

❖ Terminology:

▪ Garbage collection: mark-and-sweep

▪ Memory-related issues in C

❖ Questions from the Reading?

8

CSE351, Autumn 2022L26: Memory Allocation III

Wouldn’t it be nice…

❖ If we never had to free memory?

❖ Do you free objects in Java?

▪ Reminder: implicit allocator

9

CSE351, Autumn 2022L26: Memory Allocation III

Garbage Collection (GC)

❖ Garbage collection: automatic reclamation of heap-allocated
storage – application never explicitly frees memory

❖ Common in implementations of functional languages, scripting
languages, and modern object oriented languages:
▪ Lisp, Racket, Erlang, ML, Haskell, Scala, Java, C#, Perl, Ruby, Python, Lua,

JavaScript, Dart, Mathematica, MATLAB, many more…

❖ Variants (“conservative” garbage collectors) exist for C and C++
▪ However, cannot necessarily collect all garbage

10

void foo() {

int* p = (int*) malloc(128);

return; /* p block is now garbage! */

}

(Automatic Memory Management)

CSE351, Autumn 2022L26: Memory Allocation III

Garbage Collection

❖ How does the memory allocator know when memory
can be freed?

▪ In general, we cannot know what is going to be used in the
future since it depends on conditionals

▪ But, we can tell that certain blocks cannot be used if they
are unreachable (via pointers in registers/stack/globals)

❖ Memory allocator needs to know what is a pointer
and what is not – how can it do this?

▪ Sometimes with help from the compiler

11

CSE351, Autumn 2022L26: Memory Allocation III

Memory as a Graph

❖ We view memory as a directed graph
▪ Each allocated heap block is a node in the graph

▪ Each pointer is an edge in the graph

▪ Locations not in the heap that contain pointers into the heap are called
root nodes (e.g., registers, stack locations, global variables)

12

A node (block) is reachable if there is a path from any root to that node
Non-reachable nodes are garbage (cannot be needed by the application)

Root nodes

Heap nodes

not reachable
(garbage)

reachable

CSE351, Autumn 2022L26: Memory Allocation III

Garbage Collection

❖ Dynamic memory allocator can free blocks if there are
no pointers to them

❖ How can it know what is a pointer and what is not?

❖ We’ll make some assumptions about pointers:

▪ Memory allocator can distinguish pointers from non-
pointers

▪ All pointers point to the start of a block in the heap

▪ Application cannot hide pointers
(e.g., by coercing them to a long, and then back again)

13

CSE351, Autumn 2022L26: Memory Allocation III

Classical GC Algorithms

❖ Mark-and-sweep collection (McCarthy, 1960)
▪ Does not move blocks (unless you also “compact”)

❖ Reference counting (Collins, 1960)
▪ Does not move blocks (not discussed)

❖ Copying collection (Minsky, 1963)
▪ Moves blocks (not discussed)

❖ Generational Collectors (Lieberman and Hewitt, 1983)

▪ Most allocations become garbage very soon, so

focus reclamation work on zones of memory recently allocated.

❖ For more information:
▪ Jones, Hosking, and Moss, The Garbage Collection Handbook: The Art of

Automatic Memory Management, CRC Press, 2012.

▪ Jones and Lin, Garbage Collection: Algorithms for Automatic Dynamic
Memory, John Wiley & Sons, 1996.

14

CSE351, Autumn 2022L26: Memory Allocation III

Mark and Sweep Collecting

❖ Can build on top of malloc/free package
▪ Allocate using malloc until you “run out of space”

❖ When out of space:
▪ Use extra mark bit in the header of each block

▪ Mark: Start at roots and set mark bit on each reachable block

▪ Sweep: Scan all blocks and free blocks that are not marked

15

Before mark

root

After mark Mark bit set

After sweep freefree

Arrows are NOT
free list pointers

CSE351, Autumn 2022L26: Memory Allocation III

Assumptions For a Simple Implementation

❖ Application can use functions to allocate memory:
▪ b=new(n) returns pointer, b, to new block with all locations cleared

▪ b[i] read location i of block b into register

▪ b[i]=v write v into location i of block b

❖ Each block will have a header word (accessed at b[-1])

❖ Functions used by the garbage collector:
▪ is_ptr(p) determines whether p is a pointer to a block

▪ length(p) returns length of block pointed to by p, not including
header

▪ get_roots() returns all the roots

16

Non-testable
Material

CSE351, Autumn 2022L26: Memory Allocation III

Mark

❖ Mark using depth-first traversal of the memory graph

17

ptr mark(ptr p) { // p: some word in a heap block

if (!is_ptr(p)) return; // do nothing if not pointer

if (markBitSet(p)) return; // check if already marked

setMarkBit(p); // set the mark bit

for (i=0; i<length(p); i++) // recursively call mark on

mark(p[i]); // all words in the block

return;

}

Before mark

root

After mark Mark bit set

Non-testable
Material

CSE351, Autumn 2022L26: Memory Allocation III

Sweep

❖ Sweep using sizes in headers

18

ptr sweep(ptr p, ptr end) { // ptrs to start & end of heap

while (p < end) { // while not at end of heap

if (markBitSet(p)) // check if block is marked

clearMarkBit(p); // if so, reset mark bit

else if (allocateBitSet(p)) // if not marked, but allocated

free(p); // free the block

p += length(p); // adjust pointer to next block

}

}

Non-testable
Material

After mark Mark bit set

After sweep freefree

CSE351, Autumn 2022L26: Memory Allocation III

Conservative Mark & Sweep in C

❖ Would mark & sweep work in C?
▪ is_ptr determines if a word is a pointer by checking if it points to an

allocated block of memory

▪ But in C, pointers can point into the middle of allocated blocks
(not so in Java)

• Makes it tricky to find all allocated blocks in mark phase

▪ There are ways to solve/avoid this problem in C, but the resulting
garbage collector is conservative:

• Every reachable node correctly identified as reachable, but some unreachable
nodes might be incorrectly marked as reachable

▪ In Java, all pointers (i.e., references) point to the starting address of an
object structure – the start of an allocated block

19

header

ptr

Non-testable
Material

CSE351, Autumn 2022L26: Memory Allocation III

Memory-Related Perils and Pitfalls in C

20

Slide
Program stop

possible? Fixes:

A) Dereferencing a non-pointer

B) Freed block – access again

C) Freed block – free again

D) Memory leak – failing to free memory

E) No bounds checking

F) Reading uninitialized memory

G) Referencing nonexistent variable

H) Wrong allocation size

CSE351, Autumn 2022L26: Memory Allocation III

Find That Bug! (Slide 21)

21

char s[8];

int i;

gets(s); /* reads "123456789" from stdin */

Error Prog stop Fix:
Type: Possible?

CSE351, Autumn 2022L26: Memory Allocation III

Find That Bug! (Slide 22)

22

int* foo() {

int val = 0;

return &val;

}

Error Prog stop Fix:
Type: Possible?

CSE351, Autumn 2022L26: Memory Allocation III

Find That Bug! (Slide 23)

• N and M defined elsewhere (#define)

23

int** p;

p = (int**)malloc(N * sizeof(int));

for (int i = 0; i < N; i++) {

p[i] = (int*)malloc(M * sizeof(int));

}

Error Prog stop Fix:
Type: Possible?

CSE351, Autumn 2022L26: Memory Allocation III

Find That Bug! (Slide 24)

• A is NxN matrix, x is N-sized vector (so product is vector of size N)

• N defined elsewhere (#define)

24

/* return y = Ax */

int* matvec(int** A, int* x) {

int* y = (int*)malloc(N*sizeof(int));

int i, j;

for (i = 0; i < N; i++)

for (j = 0; j < N; j++)

y[i] += A[i][j] * x[j];

return y;

}

Error Prog stop Fix:
Type: Possible?

CSE351, Autumn 2022L26: Memory Allocation III

Find That Bug! (Slide 25)

❖ The classic scanf bug
▪ int scanf(const char *format)

25

int val;

...

scanf("%d", val);

Error Prog stop Fix:
Type: Possible?

CSE351, Autumn 2022L26: Memory Allocation III

Find That Bug! (Slide 26)

26

x = (int*)malloc(N * sizeof(int));

// manipulate x

free(x);

...

y = (int*)malloc(M * sizeof(int));

// manipulate y

free(x);

Error Prog stop Fix:
Type: Possible?

CSE351, Autumn 2022L26: Memory Allocation III

Find That Bug! (Slide 27)

27

x = (int*)malloc(N * sizeof(int));

// manipulate x

free(x);

...

y = (int*)malloc(M * sizeof(int));

for (i=0; i<M; i++)

y[i] = x[i]++;

Error Prog stop Fix:
Type: Possible?

CSE351, Autumn 2022L26: Memory Allocation III

Find That Bug! (Slide 28)

28

typedef struct L {

int val;

struct L* next;

} list;

void foo() {

list* head = (list*) malloc(sizeof(list));

head->val = 0;

head->next = NULL;

// create and manipulate the rest of the list

...

free(head);

return;

}

Error Prog stop Fix:
Type: Possible?

CSE351, Autumn 2022L26: Memory Allocation III

Quick Debugging Note

❖ Staring at code until you think you spot a bug is
generally not an effective way to debug!

▪ Of course it looks logically correct to you – you wrote it!

▪ Language like C doesn’t abstract away memory – it’s part of
your program state that you need to keep track of
• Your code will only get longer and more complicated in the future:

there’s too much to try to keep track of mentally

❖ Instead, start with bad/unexpected behavior to guide
your search

▪ Memory bugs/“errors” can be especially tricky because they
often don’t result in explicit errors or program stoppages

29

CSE351, Autumn 2022L26: Memory Allocation III

Dealing With Memory Bugs

❖ Make use of all of the tools available to you:

▪ Pay attention to compiler warnings and errors

▪ Use debuggers like GDB to track down runtime errors
• Good for bad pointer dereferences, bad with other memory bugs

▪ is a powerful debugging and analysis utility for
Linux, especially good for memory bugs
• Checks each individual memory reference at runtime (i.e., only

detects issues with parts of code used in a specific execution)

• Can catch many memory bugs, including bad pointers, reading
uninitialized data, double-frees, and memory leaks

30

CSE351, Autumn 2022L26: Memory Allocation III

What about Java or ML or Python or …?

❖ In memory-safe languages, most of these bugs are
impossible

▪ Cannot perform arbitrary pointer manipulation

▪ Cannot get around the type system

▪ Array bounds checking, null pointer checking

▪ Automatic memory management

❖ But one of the bugs we saw earlier is possible. Which
one?

31

CSE351, Autumn 2022L26: Memory Allocation III

Memory Leaks with GC

❖ Not because of forgotten — we have GC!

❖ Unneeded “leftover” roots keep objects reachable

❖ Sometimes nullifying a variable is not needed for correctness
but is for performance

❖ Example: Don’t leave big data structures you’re done with in a
static field

32

Root nodes

Heap nodes

not reachable
(garbage)

reachable

CSE351, Autumn 2022L26: Memory Allocation III

Debugging, Revisited

“As soon as we started programming, we found to our
surprise that it wasn't as easy to get programs right as
we had thought. Debugging had to be discovered. I can
remember the exact instant when I realized that a large
part of my life from then on was going to be spent in
finding mistakes in my own programs.”

– Memoirs of a Computer Pioneer
– by Maurice Wilkes

33

CSE351, Autumn 2022L26: Memory Allocation III

Debugging Strategies

❖ You’ve got to find what works best for you

❖ Try a lot – your debugging technique should grow
over time and some techniques will work better for
different domains

▪ Print debugging

▪ Using a debugger

▪ Visualizations

▪ Generating thorough test cases/suites

▪ Including sensible checks throughout your program

▪ etc.

❖ But this isn’t what we’re here to talk about now…

34

CSE351, Autumn 2022L26: Memory Allocation III

Supporting Yourself While Debugging

❖ This is also a learning process!

❖ Why is this necessary (and difficult)?

▪ CS actively encourages prolonged periods of mental
concentration
• Easy to tune everything else out when you remain immobile just a few

feet from your screen (and screens are getting bigger)

• Programmers describe sometimes being “in the zone”

• Long coding sessions and late nights are socially and culturally
encouraged

• Hackathons are designed this way and also encourage you to ignore
your bodily needs

• Tech companies entice you to stay at work with free food and
amenities

35

CSE351, Autumn 2022L26: Memory Allocation III

Supporting Yourself While Debugging

❖ This is also a learning process!

❖ Why is this necessary (and difficult)?

▪ When your code doesn’t work, it can evoke a lot of different
negative emotions

▪ A heightened emotional state can impede your thinking
ability and scope, which can cause you to spiral
• Can interact with imposter syndrome, stereotype threat, and other

self-esteem issues

▪ As your mood drops, this can also manifest physically in your
body – bad posture, feeling “tense,” delaying attending to
your needs or forgetting to altogether

36

CSE351, Autumn 2022L26: Memory Allocation III

Supporting Yourself While Debugging

❖ Mindfulness: “The practice of bringing one’s
attention in the present moment”

▪ Lots of different definitions and nuance, but we’ll stick with
this broad definition and not the wellness craze

❖ While debugging, try to be mindful of your emotional
and physical state as well as your current approach

▪ Are you focused on the task at hand or distracted?

▪ Am I calm and/or rested enough to be thinking “clearly?”

▪ How is my posture, breathing, and tenseness?

▪ Do I have any physical needs that I should address?

▪ What approach am I trying and why? Are there alternatives?
37

CSE351, Autumn 2022L26: Memory Allocation III

Supporting Yourself While Debugging

❖ Try: set a timer for <your interval of choice>
(e.g., 15 minutes) to evaluate your state and
approach

▪ Like the system timer your OS uses for context switching!

❖ If you’re distracted, feeling negative emotions, tense,
or need to address something, take a break!

▪ You will often find that you’ll make a discovery while on a
break or at least recover from setbacks

▪ Breaks also vary wildly by individual and situation
• Make sure that you actually feel rested afterward

• e.g., make tea, work out, do chores, watch a show/movie, play games,
chat with friends, make art

38

CSE351, Autumn 2022L26: Memory Allocation III

Supporting Yourself

❖ There are few guarantees for support, besides the
support that you can give yourself

▪ Get comfortable in your own skin and stand up for yourself

▪ Can also find support from peers, mentors, family, friends

❖ Your wellbeing is much more important than your
assignment grade, your GPA, your degree, your pride,
or whatever else is pushing you to finish right now

❖ Don’t attach too much of your self-worth to
programming and debugging

▪ There’s so much more that makes you a wonderful and
worthwhile human being!

39

