Memory & Caches II

CSE 351 Autumn 2022

Instructor:

Justin Hsia

Teaching Assistants:

Angela Xu

Arjun Narendra

Armin Magness

Assaf Vayner

Carrie Hu

Clare Edmonds

David Dai

Dominick Ta

Effie Zheng

James Froelich

Jenny Peng

Kristina Lansang

Paul Stevans

Renee Ruan

Vincent Xiao

https://what-if.xkcd.com/111/

Relevant Course Information

- Mid-quarter Survey due Wednesday (11/9)
- hw16 due Wednesday (11/9)
- hw17 due next Wednesday (11/17)
 - Don't wait too long, this is a BIG hw (includes this lecture)
- Lab 3 due Friday (11/11)
 - Veteran's Day: no lecture, but some office hours (see Ed)
- Midterm grades will be released when we can
 - Regrade requests will be available afterward

Memory Hierarchies (Review)

- Some fundamental and enduring properties of hardware and software systems:
 - Faster storage technologies almost always cost more per byte and have lower capacity
 - The gaps between memory technology speeds are widening
 - True for: registers ↔ cache, cache ↔ DRAM, DRAM ↔ disk, etc.
 - Well-written programs tend to exhibit good locality
- These properties complement each other beautifully
 - They suggest an approach for organizing memory and storage systems known as a <u>memory hierarchy</u>
 - For each level k, the faster, smaller device at level k serves as a cache for the larger, slower device at level k+1

An Example Memory Hierarchy

An Example Memory Hierarchy

CSE351. Autumn 2022

Intel Core i7 Cache Hierarchy

Processor package

Block size:

64 bytes for all caches

L1 i-cache and d-cache:

32 KiB, 8-way, Access: 4 cycles

L2 unified cache:

256 KiB, 8-way, Access: 11 cycles

L3 unified cache:

8 MiB, 16-way,

Access: 30-40 cycles

Making memory accesses fast!

- Cache basics
- Principle of locality
- Memory hierarchies
- Cache organization
 - Direct-mapped (sets; index + tag)
 - Associativity (ways)
 - Replacement policy
 - Handling writes
- Program optimizations that consider caches

Reading Review

- Terminology:
 - Memory hierarchy
 - Cache parameters: block size (K), cache size (C)
 - Addresses: block offset field (k bits wide)
 - Cache organization: direct-mapped cache, index field
- Questions from the Reading?

Review Questions

- We have a direct-mapped cache with the following parameters:
 - Block size of 8 bytes
 - Cache size of 4 KiB
- How many blocks can the cache hold?
- How many bits wide is the block offset field?
- Which of the following addresses would fall under block number 3?
 - A. 0x3

- **B.** 0x1F
- C. 0x30
- D. 0x38

Note: The textbook uses "B" for block size

- \bullet Block Size (K): unit of transfer between \$ and Mem
 - Given in bytes and always a power of 2 (e.g., 64 B)
 - Blocks consist of adjacent bytes (differ in address by 1)
 - Spatial locality!
 - Small example (K = 4 B):

Note: The textbook uses "B" for block size

- \bullet Block Size (K): unit of transfer between \$ and Mem
 - Given in bytes and always a power of 2 (e.g., 64 B)
 - Blocks consist of adjacent bytes (differ in address by 1)
 - Spatial locality!

Note: The textbook uses "b" for offset bits

- \bullet Block Size (K): unit of transfer between \$ and Mem
 - Given in bytes and always a power of 2 (e.g., 64 B)
 - Blocks consist of adjacent bytes (differ in address by 1)
 - Spatial locality!

Offset field

- Low-order $log_2(K) = k$ bits of address tell you which byte within a block
 - (address) mod $2^n = n$ lowest bits of address
- (address) modulo (# of bytes in a block)

Note: The textbook uses "b" for offset bits

- \bullet Block Size (K): unit of transfer between \$ and Mem
 - Given in bytes and always a power of 2 (e.g., 64 B)
 - Blocks consist of adjacent bytes (differ in address by 1)
 - Spatial locality!

Example:

■ If we have 6-bit addresses and block size K = 4 B, which block and byte does 0×15 refer to?

- Cache Size (C): amount of data the \$ can store
 - Cache can only hold so much data (subset of next level)
 - Given in bytes (C) or number of blocks (C/K)
 - Example: C = 32 KiB = 512 blocks if using 64-B blocks
- Where should data go in the cache?
 - We need a mapping from memory addresses to specific locations in the cache to make checking the cache for an address fast
- What is a data structure that provides fast lookup?
 - Hash table!

Hash Tables for Fast Lookup

Insert:

5

27

34

102

119

Apply hash function to map data to "buckets"

_	
О	
1	
2	
3	
4	
5	
6	
7	
8	
9	

Place Data in Cache by Hashing Address

Place Data in Cache by Hashing Address

Polling Question

- * 6-bit addresses, block size K = 4 B, and our cache holds S = 4 blocks.
- A request for address 0x2A results in a cache miss. Which index does this block get loaded into and which 3 other addresses are loaded along with it?
 - Vote on Ed Lessons

CSE351, Autumn 2022

Place Data in Cache by Hashing Address

CSE351. Autumn 2022

Tags Differentiate Blocks in Same Index

Checking for a Requested Address

- CPU sends address request for chunk of data
 - Address and requested data are not the same thing!
 - Analogy: your friend ≠ their phone number
- TIO address breakdown:

- Index field tells you where to look in cache
- Tag field lets you check that data is the block you want
- Offset field selects specified start byte within block
- Note: t and s sizes will change based on hash function

Cache Puzzle Example (No Voting)

- Based on the following behavior, which of the following block sizes is NOT possible for our cache?
 - Cache starts empty, also known as a cold cache
 - Access (addr: hit/miss) stream:
 - (14: miss), (15: hit), (16: miss)

- A. 4 bytes
- B. 8 bytes
- C. 16 bytes
- D. 32 bytes
- E. We're lost...

Summary: Direct-Mapped Cache

Direct-Mapped Cache Problem

