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Relevant Course Information

❖ Mid-quarter Survey due Wednesday (11/9)

❖ hw16 due Wednesday (11/9)

❖ hw17 due next Wednesday (11/17)

▪ Don’t wait too long, this is a BIG hw (includes this lecture)

❖ Lab 3 due Friday (11/11)

▪ Veteran’s Day: no lecture, but some office hours (see Ed)

❖ Midterm grades will be released when we can

▪ Regrade requests will be available afterward
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Memory Hierarchies (Review)

❖ Some fundamental and enduring properties of 
hardware and software systems:

▪ Faster storage technologies almost always cost more per 
byte and have lower capacity

▪ The gaps between memory technology speeds are widening
• True for: registers ↔ cache, cache ↔ DRAM, DRAM ↔ disk, etc.

▪ Well-written programs tend to exhibit good locality

❖ These properties complement each other beautifully

▪ They suggest an approach for organizing memory and 
storage systems known as a memory hierarchy
• For each level k, the faster, smaller device at level k serves as a cache 

for the larger, slower device at level k+1
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An Example Memory Hierarchy
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registers

on-chip L1
cache (SRAM)

main memory
(DRAM)

local secondary storage
(local disks)

Larger,  
slower, 
cheaper 
per byte

remote secondary storage
(distributed file systems, web servers)

Local disks hold files 
retrieved from disks on 
remote network servers

Main memory holds disk blocks 
retrieved from local disks

off-chip L2
cache (SRAM)

L1 cache holds cache lines retrieved from L2 cache

CPU registers hold words retrieved from L1 cache

L2 cache holds cache lines retrieved 
from main memory

Smaller,
faster,
costlier
per byte
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An Example Memory Hierarchy
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registers

on-chip L1
cache (SRAM)

main memory
(DRAM)

local secondary storage
(local disks)

Larger,  
slower, 
cheaper 
per byte

remote secondary storage
(distributed file systems, web servers)

off-chip L2
cache (SRAM)

explicitly program-controlled 
(e.g., refer to exactly %rax, %rbx)

Smaller,
faster,
costlier
per byte

program sees “memory”;
hardware manages caching

transparently
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Intel Core i7 Cache Hierarchy
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Regs

L1 
d-cache

L1 
i-cache

L2 unified cache

Core 0

Regs

L1 
d-cache

L1 
i-cache

L2 unified cache

Core 3

…

L3 unified cache
(shared by all cores)

Main memory

Processor package

Block size: 
64 bytes for all caches

L1 i-cache and d-cache:
32 KiB,  8-way, 
Access: 4 cycles

L2 unified cache:
256 KiB, 8-way, 
Access: 11 cycles

L3 unified cache:
8 MiB, 16-way,
Access: 30-40 cycles
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Making memory accesses fast!

❖ Cache basics

❖ Principle of locality

❖ Memory hierarchies

❖ Cache organization

▪ Direct-mapped (sets; index + tag)

▪ Associativity (ways)

▪ Replacement policy

▪ Handling writes

❖ Program optimizations that consider caches
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Reading Review

❖ Terminology:

▪ Memory hierarchy

▪ Cache parameters:  block size (𝐾), cache size (𝐶)

▪ Addresses:  block offset field (𝑘 bits wide)

▪ Cache organization:  direct-mapped cache, index field

❖ Questions from the Reading?
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Review Questions

❖ We have a direct-mapped cache with the following 
parameters:

▪ Block size of 8 bytes

▪ Cache size of 4 KiB

❖ How many blocks can the cache hold?

❖ How many bits wide is the block offset field?

❖ Which of the following addresses would fall under 
block number 3?

A. 0x3 B. 0x1F C. 0x30 D. 0x38
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Cache Organization (1)

❖ Block Size (𝐾):  unit of transfer between $ and Mem

▪ Given in bytes and always a power of 2 (e.g., 64 B)

▪ Blocks consist of adjacent bytes (differ in address by 1)
• Spatial locality!

▪ Small example (𝐾 = 4 B):
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Note:  The textbook 
uses “B” for block size

start of Mem → ← end of Mem

Block 0 Block 1 Block 2 Block 3
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Cache Organization (1)

❖ Block Size (𝐾):  unit of transfer between $ and Mem

▪ Given in bytes and always a power of 2 (e.g., 64 B)

▪ Blocks consist of adjacent bytes (differ in address by 1)
• Spatial locality!
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Note:  The textbook 
uses “B” for block size
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Cache Organization (1)

❖ Block Size (𝐾):  unit of transfer between $ and Mem

▪ Given in bytes and always a power of 2 (e.g., 64 B)

▪ Blocks consist of adjacent bytes (differ in address by 1)
• Spatial locality!

❖ Offset field 

▪ Low-order log2 𝐾 = 𝒌 bits of address tell you which byte 
within a block
• (address) mod 2𝑛 = 𝑛 lowest bits of address

▪ (address) modulo (# of bytes in a block)
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Block Number Block Offset𝒎-bit address:
(refers to byte in memory)

𝒌 bits𝒎− 𝒌 bits

Note:  The textbook 
uses “b” for offset bits
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Cache Organization (1)

❖ Block Size (𝐾):  unit of transfer between $ and Mem

▪ Given in bytes and always a power of 2 (e.g., 64 B)

▪ Blocks consist of adjacent bytes (differ in address by 1)
• Spatial locality!

❖ Example:

▪ If we have 6-bit addresses and block size 𝐾 = 4 B, which 
block and byte does refer to?
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Note:  The textbook 
uses “b” for offset bits
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Cache Organization (2)

❖ Cache Size (𝐶):  amount of data the $ can store

▪ Cache can only hold so much data (subset of next level)

▪ Given in bytes (𝐶) or number of blocks (𝐶/𝐾)

▪ Example:  𝐶 = 32 KiB = 512 blocks if using 64-B blocks

❖ Where should data go in the cache?

▪ We need a mapping from memory addresses to specific 
locations in the cache to make checking the cache for an 
address fast

❖ What is a data structure that provides fast lookup?

▪ Hash table!

14



CSE351, Autumn 2022L17:  Caches II

Hash Tables for Fast Lookup
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0
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3

4

5

6

7

8

9

Insert:
5

27

34

102

119

Apply hash function to map data 
to “buckets”
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Place Data in Cache by Hashing Address

❖ Map to cache index from block 
number

▪ Use next log2 𝐶/𝐾 = 𝒔 bits 

▪ (block number) mod (# blocks in 
cache)
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Block Num Block Data

0000

0001

0010

0011

0100

0101

0110

0111

1000

1001

1010

1011

1100

1101

1110

1111

Memory Cache

Index Block Data

00

01

10

11

Here 𝐾 = 4 B
and 𝐶/𝐾 = 4
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Place Data in Cache by Hashing Address

❖ Map to cache index from block 
number

▪ Lets adjacent blocks fit in cache 
simultaneously!
• Consecutive blocks go in consecutive 

cache indices
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Block Num Block Data

0000

0001

0010

0011

0100

0101

0110

0111

1000

1001

1010

1011

1100

1101

1110

1111

Memory Cache

Index Block Data

00

01

10

11

Here 𝐾 = 4 B
and 𝐶/𝐾 = 4
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Polling Question

❖ 6-bit addresses, block size 𝐾 = 4 B, and our cache 
holds 𝑆 = 4 blocks.

❖ A request for address 0x2A results in a cache miss.  
Which index does this block get loaded into and 
which 3 other addresses are loaded along with it? 

▪ Vote on Ed Lessons
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Place Data in Cache by Hashing Address

❖ Collision!

▪ This might confuse the cache later 
when we access the data

▪ Solution?
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Block Num Block Data

0000

0001

0010

0011

0100

0101

0110

0111

1000

1001

1010

1011

1100

1101

1110

1111

Memory Cache

Index Block Data

00

01

10

11

Here 𝐾 = 4 B
and 𝐶/𝐾 = 4
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Tags Differentiate Blocks in Same Index

❖ Tag = rest of address bits

▪ 𝒕 bits = 𝒎− 𝒔 − 𝒌

▪ Check this during a cache lookup
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Block Num Block Data

0000

0001

0010

0011

0100

0101

0110

0111

1000

1001

1010

1011

1100

1101

1110

1111

Memory Cache

Index Tag Block Data

00 00

01

10 01

11 01

Here 𝐾 = 4 B
and 𝐶/𝐾 = 4
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Checking for a Requested Address

❖ CPU sends address request for chunk of data

▪ Address and requested data are not the same thing!
• Analogy:  your friend ≠ their phone number

❖ TIO address breakdown:

▪ Index field tells you where to look in cache

▪ Tag field lets you check that data is the block you want

▪ Offset field selects specified start byte within block

▪ Note: 𝒕 and 𝒔 sizes will change based on hash function
21

Tag (𝒕) Offset (𝒌)𝒎-bit address:

Block Number

Index (𝒔)
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Cache Puzzle Example (No Voting)

❖ Based on the following behavior, which of the 
following block sizes is NOT possible for our cache?

▪ Cache starts empty, also known as a cold cache

▪ Access (addr: hit/miss) stream:
• (14: miss), (15: hit), (16: miss)

A. 4 bytes

B. 8 bytes

C. 16 bytes

D. 32 bytes

E. We’re lost…
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Summary: Direct-Mapped Cache

❖ Hash function:  (block number) 
mod (# of blocks in cache)

▪ Each memory address maps to 
exactly one index in the cache

▪ Fast (and simpler) to find a block
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Block Num Block Data

00 00

00 01

00 10

00 11

01 00

01 01

01 10

01 11

10 00

10 01

10 10

10 11

11 00

11 01

11 10

11 11

Memory Cache

Index Tag Block Data

00 00

01 11

10 01

11 01

Here 𝐾 = 4 B
and 𝐶/𝐾 = 4
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Direct-Mapped Cache Problem

❖ What happens if we access the 
following addresses?

▪ 8, 24, 8, 24, 8, …?

▪ Conflict in cache (misses!)

▪ Rest of cache goes unused

❖ Solution?
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Block Num Block Data

00 00

00 01

00 10

00 11

01 00

01 01

01 10

01 11

10 00

10 01

10 10

10 11

11 00

11 01

11 10

11 11

Memory Cache

Index Tag Block Data

00 ??

01 ??

10

11 ??

Here 𝐾 = 4 B
and 𝐶/𝐾 = 4


