
CSE351, Autumn 2022L17: Caches II

Memory & Caches II
CSE 351 Autumn 2022

Instructor:
Justin Hsia

Teaching Assistants:
Angela Xu
Arjun Narendra
Armin Magness
Assaf Vayner
Carrie Hu
Clare Edmonds
David Dai
Dominick Ta
Effie Zheng
James Froelich
Jenny Peng
Kristina Lansang
Paul Stevans
Renee Ruan
Vincent Xiao

https://what-if.xkcd.com/111/

https://what-if.xkcd.com/111/

CSE351, Autumn 2022L17: Caches II

Relevant Course Information

❖ Mid-quarter Survey due Wednesday (11/9)

❖ hw16 due Wednesday (11/9)

❖ hw17 due next Wednesday (11/17)

▪ Don’t wait too long, this is a BIG hw (includes this lecture)

❖ Lab 3 due Friday (11/11)

▪ Veteran’s Day: no lecture, but some office hours (see Ed)

❖ Midterm grades will be released when we can

▪ Regrade requests will be available afterward

2

CSE351, Autumn 2022L17: Caches II

Memory Hierarchies (Review)

❖ Some fundamental and enduring properties of
hardware and software systems:

▪ Faster storage technologies almost always cost more per
byte and have lower capacity

▪ The gaps between memory technology speeds are widening
• True for: registers ↔ cache, cache ↔ DRAM, DRAM ↔ disk, etc.

▪ Well-written programs tend to exhibit good locality

❖ These properties complement each other beautifully

▪ They suggest an approach for organizing memory and
storage systems known as a memory hierarchy
• For each level k, the faster, smaller device at level k serves as a cache

for the larger, slower device at level k+1
3

CSE351, Autumn 2022L17: Caches II

An Example Memory Hierarchy

4

registers

on-chip L1
cache (SRAM)

main memory
(DRAM)

local secondary storage
(local disks)

Larger,
slower,
cheaper
per byte

remote secondary storage
(distributed file systems, web servers)

Local disks hold files
retrieved from disks on
remote network servers

Main memory holds disk blocks
retrieved from local disks

off-chip L2
cache (SRAM)

L1 cache holds cache lines retrieved from L2 cache

CPU registers hold words retrieved from L1 cache

L2 cache holds cache lines retrieved
from main memory

Smaller,
faster,
costlier
per byte

CSE351, Autumn 2022L17: Caches II

An Example Memory Hierarchy

5

registers

on-chip L1
cache (SRAM)

main memory
(DRAM)

local secondary storage
(local disks)

Larger,
slower,
cheaper
per byte

remote secondary storage
(distributed file systems, web servers)

off-chip L2
cache (SRAM)

explicitly program-controlled
(e.g., refer to exactly %rax, %rbx)

Smaller,
faster,
costlier
per byte

program sees “memory”;
hardware manages caching

transparently

CSE351, Autumn 2022L17: Caches II

Intel Core i7 Cache Hierarchy

6

Regs

L1
d-cache

L1
i-cache

L2 unified cache

Core 0

Regs

L1
d-cache

L1
i-cache

L2 unified cache

Core 3

…

L3 unified cache
(shared by all cores)

Main memory

Processor package

Block size:
64 bytes for all caches

L1 i-cache and d-cache:
32 KiB, 8-way,
Access: 4 cycles

L2 unified cache:
256 KiB, 8-way,
Access: 11 cycles

L3 unified cache:
8 MiB, 16-way,
Access: 30-40 cycles

CSE351, Autumn 2022L17: Caches II

Making memory accesses fast!

❖ Cache basics

❖ Principle of locality

❖ Memory hierarchies

❖ Cache organization

▪ Direct-mapped (sets; index + tag)

▪ Associativity (ways)

▪ Replacement policy

▪ Handling writes

❖ Program optimizations that consider caches

7

CSE351, Autumn 2022L17: Caches II

Reading Review

❖ Terminology:

▪ Memory hierarchy

▪ Cache parameters: block size (𝐾), cache size (𝐶)

▪ Addresses: block offset field (𝑘 bits wide)

▪ Cache organization: direct-mapped cache, index field

❖ Questions from the Reading?

8

CSE351, Autumn 2022L17: Caches II

Review Questions

❖ We have a direct-mapped cache with the following
parameters:

▪ Block size of 8 bytes

▪ Cache size of 4 KiB

❖ How many blocks can the cache hold?

❖ How many bits wide is the block offset field?

❖ Which of the following addresses would fall under
block number 3?

A. 0x3 B. 0x1F C. 0x30 D. 0x38

9

CSE351, Autumn 2022L17: Caches II

Cache Organization (1)

❖ Block Size (𝐾): unit of transfer between $ and Mem

▪ Given in bytes and always a power of 2 (e.g., 64 B)

▪ Blocks consist of adjacent bytes (differ in address by 1)
• Spatial locality!

▪ Small example (𝐾 = 4 B):

10

Note: The textbook
uses “B” for block size

start of Mem → ← end of Mem

Block 0 Block 1 Block 2 Block 3

CSE351, Autumn 2022L17: Caches II

Cache Organization (1)

❖ Block Size (𝐾): unit of transfer between $ and Mem

▪ Given in bytes and always a power of 2 (e.g., 64 B)

▪ Blocks consist of adjacent bytes (differ in address by 1)
• Spatial locality!

11

Note: The textbook
uses “B” for block size

CSE351, Autumn 2022L17: Caches II

Cache Organization (1)

❖ Block Size (𝐾): unit of transfer between $ and Mem

▪ Given in bytes and always a power of 2 (e.g., 64 B)

▪ Blocks consist of adjacent bytes (differ in address by 1)
• Spatial locality!

❖ Offset field

▪ Low-order log2 𝐾 = 𝒌 bits of address tell you which byte
within a block
• (address) mod 2𝑛 = 𝑛 lowest bits of address

▪ (address) modulo (# of bytes in a block)

12

Block Number Block Offset𝒎-bit address:
(refers to byte in memory)

𝒌 bits𝒎− 𝒌 bits

Note: The textbook
uses “b” for offset bits

CSE351, Autumn 2022L17: Caches II

Cache Organization (1)

❖ Block Size (𝐾): unit of transfer between $ and Mem

▪ Given in bytes and always a power of 2 (e.g., 64 B)

▪ Blocks consist of adjacent bytes (differ in address by 1)
• Spatial locality!

❖ Example:

▪ If we have 6-bit addresses and block size 𝐾 = 4 B, which
block and byte does refer to?

13

Note: The textbook
uses “b” for offset bits

CSE351, Autumn 2022L17: Caches II

Cache Organization (2)

❖ Cache Size (𝐶): amount of data the $ can store

▪ Cache can only hold so much data (subset of next level)

▪ Given in bytes (𝐶) or number of blocks (𝐶/𝐾)

▪ Example: 𝐶 = 32 KiB = 512 blocks if using 64-B blocks

❖ Where should data go in the cache?

▪ We need a mapping from memory addresses to specific
locations in the cache to make checking the cache for an
address fast

❖ What is a data structure that provides fast lookup?

▪ Hash table!

14

CSE351, Autumn 2022L17: Caches II

Hash Tables for Fast Lookup

15

0

1

2

3

4

5

6

7

8

9

Insert:
5

27

34

102

119

Apply hash function to map data
to “buckets”

CSE351, Autumn 2022L17: Caches II

Place Data in Cache by Hashing Address

❖ Map to cache index from block
number

▪ Use next log2 𝐶/𝐾 = 𝒔 bits

▪ (block number) mod (# blocks in
cache)

16

Block Num Block Data

0000

0001

0010

0011

0100

0101

0110

0111

1000

1001

1010

1011

1100

1101

1110

1111

Memory Cache

Index Block Data

00

01

10

11

Here 𝐾 = 4 B
and 𝐶/𝐾 = 4

CSE351, Autumn 2022L17: Caches II

Place Data in Cache by Hashing Address

❖ Map to cache index from block
number

▪ Lets adjacent blocks fit in cache
simultaneously!
• Consecutive blocks go in consecutive

cache indices

17

Block Num Block Data

0000

0001

0010

0011

0100

0101

0110

0111

1000

1001

1010

1011

1100

1101

1110

1111

Memory Cache

Index Block Data

00

01

10

11

Here 𝐾 = 4 B
and 𝐶/𝐾 = 4

CSE351, Autumn 2022L17: Caches II

Polling Question

❖ 6-bit addresses, block size 𝐾 = 4 B, and our cache
holds 𝑆 = 4 blocks.

❖ A request for address 0x2A results in a cache miss.
Which index does this block get loaded into and
which 3 other addresses are loaded along with it?

▪ Vote on Ed Lessons

18

CSE351, Autumn 2022L17: Caches II

Place Data in Cache by Hashing Address

❖ Collision!

▪ This might confuse the cache later
when we access the data

▪ Solution?

19

Block Num Block Data

0000

0001

0010

0011

0100

0101

0110

0111

1000

1001

1010

1011

1100

1101

1110

1111

Memory Cache

Index Block Data

00

01

10

11

Here 𝐾 = 4 B
and 𝐶/𝐾 = 4

CSE351, Autumn 2022L17: Caches II

Tags Differentiate Blocks in Same Index

❖ Tag = rest of address bits

▪ 𝒕 bits = 𝒎− 𝒔 − 𝒌

▪ Check this during a cache lookup

20

Block Num Block Data

0000

0001

0010

0011

0100

0101

0110

0111

1000

1001

1010

1011

1100

1101

1110

1111

Memory Cache

Index Tag Block Data

00 00

01

10 01

11 01

Here 𝐾 = 4 B
and 𝐶/𝐾 = 4

CSE351, Autumn 2022L17: Caches II

Checking for a Requested Address

❖ CPU sends address request for chunk of data

▪ Address and requested data are not the same thing!
• Analogy: your friend ≠ their phone number

❖ TIO address breakdown:

▪ Index field tells you where to look in cache

▪ Tag field lets you check that data is the block you want

▪ Offset field selects specified start byte within block

▪ Note: 𝒕 and 𝒔 sizes will change based on hash function
21

Tag (𝒕) Offset (𝒌)𝒎-bit address:

Block Number

Index (𝒔)

CSE351, Autumn 2022L17: Caches II

Cache Puzzle Example (No Voting)

❖ Based on the following behavior, which of the
following block sizes is NOT possible for our cache?

▪ Cache starts empty, also known as a cold cache

▪ Access (addr: hit/miss) stream:
• (14: miss), (15: hit), (16: miss)

A. 4 bytes

B. 8 bytes

C. 16 bytes

D. 32 bytes

E. We’re lost…
22

CSE351, Autumn 2022L17: Caches II

Summary: Direct-Mapped Cache

❖ Hash function: (block number)
mod (# of blocks in cache)

▪ Each memory address maps to
exactly one index in the cache

▪ Fast (and simpler) to find a block

23

Block Num Block Data

00 00

00 01

00 10

00 11

01 00

01 01

01 10

01 11

10 00

10 01

10 10

10 11

11 00

11 01

11 10

11 11

Memory Cache

Index Tag Block Data

00 00

01 11

10 01

11 01

Here 𝐾 = 4 B
and 𝐶/𝐾 = 4

CSE351, Autumn 2022L17: Caches II

Direct-Mapped Cache Problem

❖ What happens if we access the
following addresses?

▪ 8, 24, 8, 24, 8, …?

▪ Conflict in cache (misses!)

▪ Rest of cache goes unused

❖ Solution?

24

Block Num Block Data

00 00

00 01

00 10

00 11

01 00

01 01

01 10

01 11

10 00

10 01

10 10

10 11

11 00

11 01

11 10

11 11

Memory Cache

Index Tag Block Data

00 ??

01 ??

10

11 ??

Here 𝐾 = 4 B
and 𝐶/𝐾 = 4

