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Relevant Course Information

❖ hw15 due Monday, hw16 due Wednesday

▪ Veteran’s Day next Friday (11/11); no lecture

❖ Lab 3 due next Friday (11/11)

▪ Make sure to look at HW15 before starting

❖ Midterm starts tomorrow (11/3-5)

▪ Private posts on Ed Discussion, please!
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❖ Topic Group 1: Data

▪ Memory, Data, Integers, Floating Point, 
Arrays, Structs

❖ Topic Group 2: Programs

▪ x86-64 Assembly, Procedures, Stacks, 
Executables

❖ Topic Group 3: Scale & Coherence

▪ Caches, Processes, Virtual Memory, 
Memory Allocation

Programming Languages
& Libraries

Operating System

Hardware

Physics

Transistors, Gates, Digital Systems

Even more applications

Applications

The Hardware/Software Interface
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❖ Topic Group 3: Scale & Coherence

▪ Caches, Processes, Virtual Memory, 
Memory Allocation

❖ How do we maintain logical consistency in the face of 
more data and more processes?

▪ How do we support control flow both within many 
processes and things external to the computer?

▪ How do we support data access, including dynamic requests, 
across multiple processes?

Programming Languages
& Libraries

Operating System

Hardware

Physics

Transistors, Gates, Digital Systems

Even more applications

Applications

The Hardware/Software Interface

4

⋮



CSE351, Autumn 2022L16:  Caches I

Aside:  Units and Prefixes (Review)

❖ Here focusing on large numbers (exponents > 0)

❖ Note that 103 ≈ 210

❖ SI prefixes are ambiguous if base 10 or 2

❖ IEC prefixes are unambiguously base 2

5



CSE351, Autumn 2022L16:  Caches I

How to Remember?

❖ Will be given to you on Final reference sheet

❖ Mnemonics

▪ There unfortunately isn’t one well-accepted mnemonic
• But that shouldn’t stop you from trying to come with one!

▪ Killer Mechanical Giraffe Teaches Pet, Extinct Zebra to Yodel 

▪ Kirby Missed Ganondorf Terribly, Potentially Exterminating 
Zelda and Yoshi

▪ xkcd:  Karl Marx Gave The Proletariat Eleven Zeppelins, Yo
• https://xkcd.com/992/

▪ Post your best on Ed Discussion!
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Reading Review

❖ Terminology:

▪ Caches: cache blocks, cache hit, cache miss

▪ Principle of locality:  temporal and spatial

▪ Average memory access time (AMAT): hit time, miss penalty, 
hit rate, miss rate

❖ Questions from the Reading?
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Review Questions

❖ Convert the following to or from IEC:

▪ 512 Ki-books

▪ 227 caches

❖ Compute the average memory access time (AMAT) 
for the following system properties: 

▪ Hit time of 1 ns

▪ Miss rate of 1%

▪ Miss penalty of 100 ns
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How does execution time grow with SIZE?
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int array[SIZE];  

int sum = 0;  

for (int i = 0; i < 200000; i++) {

for (int j = 0; j < SIZE; j++) {

sum += array[j];

}

}

SIZE
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Actual Data
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Making memory accesses fast!

❖ Cache basics

❖ Principle of locality

❖ Memory hierarchies

❖ Cache organization

❖ Program optimizations that consider caches
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Processor-Memory Gap
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Processor-Memory
Performance Gap
(grows 50%/year)

1989 first Intel CPU with cache on chip
1998 Pentium III has two cache levels on chip

“Moore’s Law”
µProc

55%/year
(2X/1.5yr)

DRAM
7%/year

(2X/10yrs)
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Problem:  Processor-Memory Bottleneck
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Main 
Memory

CPU Reg

Processor performance
doubled about 
every 18 months Bus latency / bandwidth

evolved much slower

Core 2 Duo:
Can process at least
256 Bytes/cycle

Core 2 Duo:
Bandwidth
2 Bytes/cycle
Latency
100-200 cycles (30-60ns)

Problem: lots of waiting on memory

cycle: single machine step (fixed-time)
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Problem:  Processor-Memory Bottleneck

14

Main 
Memory

CPU Reg

Processor performance
doubled about 
every 18 months Bus latency / bandwidth

evolved much slower

Core 2 Duo:
Can process at least
256 Bytes/cycle

Core 2 Duo:
Bandwidth
2 Bytes/cycle
Latency
100-200 cycles (30-60ns)

Solution: caches

Cache

cycle: single machine step (fixed-time)
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Cache 💰

❖ Pronunciation:  “cash”

▪ We abbreviate this as “$”

❖ English:  A hidden storage space 
for provisions, weapons, and/or treasures

❖ Computer:  Memory with short access time used for 
the storage of frequently or recently used instructions 
(i-cache/I$) or data (d-cache/D$)

▪ More generally:  Used to optimize data transfers between 
any system elements with different characteristics (network 
interface cache, I/O cache, etc.)
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General Cache Mechanics (Review)
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0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

7 9 14 3Cache

Memory • Larger, slower, cheaper memory.
• Viewed as partitioned into “blocks”

Data is copied in block-sized 
transfer units

• Smaller, faster, more expensive 
memory

• Caches a subset of the blocks
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General Cache Concepts:  Hit (Review)

17

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

7 9 14 3Cache

Memory

Data in block b is neededRequest: 14

14
Block b is in cache:
Hit!

Data is returned to CPU
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General Cache Concepts:  Miss (Review)
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0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

7 9 14 3Cache

Memory

Data in block b is neededRequest: 12

Block b is not in cache:
Miss!

Block b is fetched from
memory

Request: 12

12

12

12

Block b is stored in cache
• Placement policy:

determines where b goes
•Replacement policy:

determines which block
gets evicted (victim)

Data is returned to CPU
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Why Caches Work (Review)

❖ Locality: Programs tend to use data and instructions 
with addresses near or equal to those they have used 
recently
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Why Caches Work (Review)

❖ Locality: Programs tend to use data and instructions 
with addresses near or equal to those they have used 
recently

❖ Temporal locality:

▪ Recently referenced items are likely 
to be referenced again in the near future

20
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Why Caches Work (Review)

❖ Locality: Programs tend to use data and instructions 
with addresses near or equal to those they have used 
recently

❖ Temporal locality:  

▪ Recently referenced items are likely 
to be referenced again in the near future

❖ Spatial locality:  

▪ Items with nearby addresses tend 
to be referenced close together in time

❖ How do caches take advantage of this?
21
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Example:  Any Locality?

❖ Data:
▪ Temporal: sum referenced in each iteration

▪ Spatial: consecutive elements of array a[] accessed

❖ Instructions:

▪ Temporal: cycle through loop repeatedly

▪ Spatial: reference instructions in sequence

22

sum = 0;

for (i = 0; i < n; i++) 

{

sum += a[i];

}

return sum;
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Locality Example #1
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int sum_array_rows(int a[M][N])

{

int i, j, sum = 0;

for (i = 0; i < M; i++)

for (j = 0; j < N; j++)

sum += a[i][j];

return sum;

}
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Locality Example #1

24

Access Pattern:
stride = ?

M = 3, N=4

Note: 76 is just one possible starting address of array a

int sum_array_rows(int a[M][N])

{

int i, j, sum = 0;

for (i = 0; i < M; i++)

for (j = 0; j < N; j++)

sum += a[i][j];

return sum;

}

76 92 108

Layout in Memory

a[0][0] a[0][1] a[0][2] a[0][3]

a[1][0] a[1][1] a[1][2] a[1][3]

a[2][0] a[2][1] a[2][2] a[2][3]

a

[0] 

[0]

a

[0] 

[1]

a

[0] 

[2]

a

[0] 

[3]

a

[1] 

[0]

a

[1] 

[1]

a

[1] 

[2]

a

[1] 

[3]

a

[2] 

[0]

a

[2] 

[1]

a

[2] 

[2]

a

[2] 

[3]

1) a[0][0]

2) a[0][1]

3) a[0][2]

4) a[0][3]

5) a[1][0]

6) a[1][1]

7) a[1][2]

8) a[1][3]

9) a[2][0]

10) a[2][1]

11) a[2][2]

12) a[2][3]
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Locality Example #2
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int sum_array_cols(int a[M][N])

{

int i, j, sum = 0;

for (j = 0; j < N; j++)

for (i = 0; i < M; i++)

sum += a[i][j];

return sum;

}
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Locality Example #2

26

int sum_array_cols(int a[M][N])

{

int i, j, sum = 0;

for (j = 0; j < N; j++)

for (i = 0; i < M; i++)

sum += a[i][j];

return sum;

}

76 92 108

Layout in Memory

a

[0] 

[0]

a

[0] 

[1]

a

[0] 

[2]

a

[0] 

[3]

a

[1] 

[0]

a

[1] 

[1]

a

[1] 

[2]

a

[1] 

[3]

a

[2] 

[0]

a

[2] 

[1]

a

[2] 

[2]

a

[2] 

[3]

M = 3, N=4

a[0][0] a[0][1] a[0][2] a[0][3]

a[1][0] a[1][1] a[1][2] a[1][3]

a[2][0] a[2][1] a[2][2] a[2][3]

Access Pattern:
stride = ?

1) a[0][0]

2) a[1][0]

3) a[2][0]

4) a[0][1]

5) a[1][1]

6) a[2][1]

7) a[0][2]

8) a[1][2]

9) a[2][2]

10) a[0][3]

11) a[1][3]

12) a[2][3]
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Locality Example #3

❖ What is wrong 
with this code?

❖ How can it be 
fixed?

27

int sum_array_3D(int a[M][N][L])

{

int i, j, k, sum = 0;

for (i = 0; i < N; i++)

for (j = 0; j < L; j++)

for (k = 0; k < M; k++)

sum += a[k][i][j];

return sum;

}

a[2][0][0] a[2][0][1] a[2][0][2] a[2][0][3]

a[2][1][0] a[2][1][1] a[2][1][2] a[2][1][3]

a[2][2][0] a[2][2][1] a[2][2][2] a[2][2][3]

a[1][0][0] a[1][0][1] a[1][0][2] a[1][0][3]

a[1][1][0] a[1][1][1] a[1][1][2] a[1][1][3]

a[1][2][0] a[1][2][1] a[1][2][2] a[1][2][3]

a[0][0][0] a[0][0][1] a[0][0][2] a[0][0][3]

a[0][1][0] a[0][1][1] a[0][1][2] a[0][1][3]

a[0][2][0] a[0][2][1] a[0][2][2] a[0][2][3] m = 0
m = 1

m =  2
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Locality Example #3
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⋅ ⋅ ⋅

int sum_array_3D(int a[M][N][L])

{

int i, j, k, sum = 0;

for (i = 0; i < N; i++)

for (j = 0; j < L; j++)

for (k = 0; k < M; k++)

sum += a[k][i][j];

return sum;

}

❖ What is wrong 
with this code?

❖ How can it be 
fixed?

Layout in Memory (M = ?, N = 3, L = 4)

a

[0]
[0] 
[0]

a

[0]
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a
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a

[0]
[1] 
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a

[0]
[1] 
[3]

a

[0]
[2] 
[0]

a

[0]
[2] 
[1]

a

[0]
[2] 
[2]

a

[0]
[2] 
[3]

a

[1]
[0] 
[0]

a

[1]
[0] 
[1]

a

[1]
[0] 
[2]

a

[1]
[0] 
[3]

a

[1]
[1] 
[0]

a

[1]
[1] 
[1]

a

[1]
[1] 
[2]

a

[1]
[1] 
[3]

a

[1]
[2] 
[0]

a

[1]
[2] 
[1]

a

[1]
[2] 
[2]

a

[1]
[2] 
[3]

76 92 108 124 140 156 172



CSE351, Autumn 2022L16:  Caches I

Cache Performance Metrics (Review)

❖ Huge difference between a cache hit and a cache miss

▪ Could be 100x speed difference between accessing cache 
and main memory (measured in clock cycles)

❖ Miss Rate (MR)

▪ Fraction of memory references not found in cache (misses / 
accesses) = 1 - Hit Rate

❖ Hit Time (HT)

▪ Time to deliver a block in the cache to the processor
• Includes time to determine whether the block is in the cache

❖ Miss Penalty (MP)

▪ Additional time required because of a miss

29



CSE351, Autumn 2022L16:  Caches I

Cache Performance (Review)

❖ Two things hurt the performance of a cache:

▪ Miss rate and miss penalty

❖ Average Memory Access Time (AMAT):  average time 
to access memory considering both hits and misses

AMAT = Hit time + Miss rate × Miss penalty

(abbreviated AMAT = HT + MR × MP)

❖ 99% hit rate twice as good as 97% hit rate!

▪ Assume HT of 1 clock cycle and MP of 100 clock cycles

▪ 97%:  AMAT =

▪ 99%:  AMAT =
30
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Practice Question

❖ Processor specs: 200 ps clock, MP of 50 clock cycles, 
MR of 0.02 misses/instruction, and HT of 1 clock cycle

AMAT = 

❖ Which improvement would be best?

A. 190 ps clock

B. Miss penalty of 40 clock cycles

C. MR of 0.015 misses/instruction
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Can we have more than one cache?

❖ Why would we want to do that?

▪ Avoid going to memory!

❖ Typical performance numbers:

▪ Miss Rate
• L1 MR = 3-10%

• L2 MR = Quite small (e.g., < 1%), depending on parameters, etc.

▪ Hit Time
• L1 HT = 4 clock cycles

• L2 HT = 10 clock cycles

▪ Miss Penalty
• P = 50-200 cycles for missing in L2 & going to main memory

• Trend: increasing!
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An Example Memory Hierarchy

33

registers

on-chip L1
cache (SRAM)

main memory
(DRAM)

local secondary storage
(local disks)

Larger,  
slower, 
cheaper 
per byte

remote secondary storage
(distributed file systems, web servers)

off-chip L2
cache (SRAM)

Smaller,
faster,
costlier
per byte

<1 ns

1 ns

5-10 ns

100 ns

150,000 ns

10,000,000 ns
(10 ms)

1-150 ms

SSD

Disk

5-10 s

1-2 min

15-30 min

31 days

66 months = 5.5 years

1 - 15 years
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Summary

❖ Memory Hierarchy

▪ Successively higher levels contain “most used” data from 
lower levels

▪ Exploits temporal and spatial locality

▪ Caches are intermediate storage levels used to optimize 
data transfers between any system elements with different 
characteristics 

❖ Cache Performance

▪ Ideal case:  found in cache (hit)

▪ Bad case:  not found in cache (miss), search in next level

▪ Average Memory Access Time (AMAT) = HT + MR × MP
• Hurt by Miss Rate and Miss Penalty
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