
CSE351, Autumn 2022L16: Caches I

Memory & Caches I
CSE 351 Autumn 2022

Instructor:
Justin Hsia

Teaching Assistants:
Angela Xu
Arjun Narendra
Armin Magness
Assaf Vayner
Carrie Hu
Clare Edmonds
David Dai
Dominick Ta
Effie Zheng
James Froelich
Jenny Peng
Kristina Lansang
Paul Stevans
Renee Ruan
Vincent Xiao

CSE351, Autumn 2022L16: Caches I

Relevant Course Information

❖ hw15 due Monday, hw16 due Wednesday

▪ Veteran’s Day next Friday (11/11); no lecture

❖ Lab 3 due next Friday (11/11)

▪ Make sure to look at HW15 before starting

❖ Midterm starts tomorrow (11/3-5)

▪ Private posts on Ed Discussion, please!

2

CSE351, Autumn 2022L16: Caches I

❖ Topic Group 1: Data

▪ Memory, Data, Integers, Floating Point,
Arrays, Structs

❖ Topic Group 2: Programs

▪ x86-64 Assembly, Procedures, Stacks,
Executables

❖ Topic Group 3: Scale & Coherence

▪ Caches, Processes, Virtual Memory,
Memory Allocation

Programming Languages
& Libraries

Operating System

Hardware

Physics

Transistors, Gates, Digital Systems

Even more applications

Applications

The Hardware/Software Interface

3

⋮

CSE351, Autumn 2022L16: Caches I

❖ Topic Group 3: Scale & Coherence

▪ Caches, Processes, Virtual Memory,
Memory Allocation

❖ How do we maintain logical consistency in the face of
more data and more processes?

▪ How do we support control flow both within many
processes and things external to the computer?

▪ How do we support data access, including dynamic requests,
across multiple processes?

Programming Languages
& Libraries

Operating System

Hardware

Physics

Transistors, Gates, Digital Systems

Even more applications

Applications

The Hardware/Software Interface

4

⋮

CSE351, Autumn 2022L16: Caches I

Aside: Units and Prefixes (Review)

❖ Here focusing on large numbers (exponents > 0)

❖ Note that 103 ≈ 210

❖ SI prefixes are ambiguous if base 10 or 2

❖ IEC prefixes are unambiguously base 2

5

CSE351, Autumn 2022L16: Caches I

How to Remember?

❖ Will be given to you on Final reference sheet

❖ Mnemonics

▪ There unfortunately isn’t one well-accepted mnemonic
• But that shouldn’t stop you from trying to come with one!

▪ Killer Mechanical Giraffe Teaches Pet, Extinct Zebra to Yodel

▪ Kirby Missed Ganondorf Terribly, Potentially Exterminating
Zelda and Yoshi

▪ xkcd: Karl Marx Gave The Proletariat Eleven Zeppelins, Yo
• https://xkcd.com/992/

▪ Post your best on Ed Discussion!

6

https://xkcd.com/992/

CSE351, Autumn 2022L16: Caches I

Reading Review

❖ Terminology:

▪ Caches: cache blocks, cache hit, cache miss

▪ Principle of locality: temporal and spatial

▪ Average memory access time (AMAT): hit time, miss penalty,
hit rate, miss rate

❖ Questions from the Reading?

7

CSE351, Autumn 2022L16: Caches I

Review Questions

❖ Convert the following to or from IEC:

▪ 512 Ki-books

▪ 227 caches

❖ Compute the average memory access time (AMAT)
for the following system properties:

▪ Hit time of 1 ns

▪ Miss rate of 1%

▪ Miss penalty of 100 ns

8

CSE351, Autumn 2022L16: Caches I

How does execution time grow with SIZE?

9

int array[SIZE];

int sum = 0;

for (int i = 0; i < 200000; i++) {

for (int j = 0; j < SIZE; j++) {

sum += array[j];

}

}

SIZE

Ex
e

cu
ti

o
n

 T
im

e

Plot:

CSE351, Autumn 2022L16: Caches I

Actual Data

10

0

5

10

15

20

25

30

35

40

45

0 2000 4000 6000 8000 10000

SIZE

Ti
m

e

CSE351, Autumn 2022L16: Caches I

Making memory accesses fast!

❖ Cache basics

❖ Principle of locality

❖ Memory hierarchies

❖ Cache organization

❖ Program optimizations that consider caches

11

CSE351, Autumn 2022L16: Caches I

Processor-Memory Gap

12

Processor-Memory
Performance Gap
(grows 50%/year)

1989 first Intel CPU with cache on chip
1998 Pentium III has two cache levels on chip

“Moore’s Law”
µProc

55%/year
(2X/1.5yr)

DRAM
7%/year

(2X/10yrs)

CSE351, Autumn 2022L16: Caches I

Problem: Processor-Memory Bottleneck

13

Main
Memory

CPU Reg

Processor performance
doubled about
every 18 months Bus latency / bandwidth

evolved much slower

Core 2 Duo:
Can process at least
256 Bytes/cycle

Core 2 Duo:
Bandwidth
2 Bytes/cycle
Latency
100-200 cycles (30-60ns)

Problem: lots of waiting on memory

cycle: single machine step (fixed-time)

CSE351, Autumn 2022L16: Caches I

Problem: Processor-Memory Bottleneck

14

Main
Memory

CPU Reg

Processor performance
doubled about
every 18 months Bus latency / bandwidth

evolved much slower

Core 2 Duo:
Can process at least
256 Bytes/cycle

Core 2 Duo:
Bandwidth
2 Bytes/cycle
Latency
100-200 cycles (30-60ns)

Solution: caches

Cache

cycle: single machine step (fixed-time)

CSE351, Autumn 2022L16: Caches I

Cache 💰

❖ Pronunciation: “cash”

▪ We abbreviate this as “$”

❖ English: A hidden storage space
for provisions, weapons, and/or treasures

❖ Computer: Memory with short access time used for
the storage of frequently or recently used instructions
(i-cache/I$) or data (d-cache/D$)

▪ More generally: Used to optimize data transfers between
any system elements with different characteristics (network
interface cache, I/O cache, etc.)

15

CSE351, Autumn 2022L16: Caches I

General Cache Mechanics (Review)

16

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

7 9 14 3Cache

Memory • Larger, slower, cheaper memory.
• Viewed as partitioned into “blocks”

Data is copied in block-sized
transfer units

• Smaller, faster, more expensive
memory

• Caches a subset of the blocks

CSE351, Autumn 2022L16: Caches I

General Cache Concepts: Hit (Review)

17

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

7 9 14 3Cache

Memory

Data in block b is neededRequest: 14

14
Block b is in cache:
Hit!

Data is returned to CPU

CSE351, Autumn 2022L16: Caches I

General Cache Concepts: Miss (Review)

18

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

7 9 14 3Cache

Memory

Data in block b is neededRequest: 12

Block b is not in cache:
Miss!

Block b is fetched from
memory

Request: 12

12

12

12

Block b is stored in cache
• Placement policy:

determines where b goes
•Replacement policy:

determines which block
gets evicted (victim)

Data is returned to CPU

CSE351, Autumn 2022L16: Caches I

Why Caches Work (Review)

❖ Locality: Programs tend to use data and instructions
with addresses near or equal to those they have used
recently

19

CSE351, Autumn 2022L16: Caches I

Why Caches Work (Review)

❖ Locality: Programs tend to use data and instructions
with addresses near or equal to those they have used
recently

❖ Temporal locality:

▪ Recently referenced items are likely
to be referenced again in the near future

20

block

CSE351, Autumn 2022L16: Caches I

Why Caches Work (Review)

❖ Locality: Programs tend to use data and instructions
with addresses near or equal to those they have used
recently

❖ Temporal locality:

▪ Recently referenced items are likely
to be referenced again in the near future

❖ Spatial locality:

▪ Items with nearby addresses tend
to be referenced close together in time

❖ How do caches take advantage of this?
21

block

block

CSE351, Autumn 2022L16: Caches I

Example: Any Locality?

❖ Data:
▪ Temporal: sum referenced in each iteration

▪ Spatial: consecutive elements of array a[] accessed

❖ Instructions:

▪ Temporal: cycle through loop repeatedly

▪ Spatial: reference instructions in sequence

22

sum = 0;

for (i = 0; i < n; i++)

{

sum += a[i];

}

return sum;

CSE351, Autumn 2022L16: Caches I

Locality Example #1

23

int sum_array_rows(int a[M][N])

{

int i, j, sum = 0;

for (i = 0; i < M; i++)

for (j = 0; j < N; j++)

sum += a[i][j];

return sum;

}

CSE351, Autumn 2022L16: Caches I

Locality Example #1

24

Access Pattern:
stride = ?

M = 3, N=4

Note: 76 is just one possible starting address of array a

int sum_array_rows(int a[M][N])

{

int i, j, sum = 0;

for (i = 0; i < M; i++)

for (j = 0; j < N; j++)

sum += a[i][j];

return sum;

}

76 92 108

Layout in Memory

a[0][0] a[0][1] a[0][2] a[0][3]

a[1][0] a[1][1] a[1][2] a[1][3]

a[2][0] a[2][1] a[2][2] a[2][3]

a

[0]

[0]

a

[0]

[1]

a

[0]

[2]

a

[0]

[3]

a

[1]

[0]

a

[1]

[1]

a

[1]

[2]

a

[1]

[3]

a

[2]

[0]

a

[2]

[1]

a

[2]

[2]

a

[2]

[3]

1) a[0][0]

2) a[0][1]

3) a[0][2]

4) a[0][3]

5) a[1][0]

6) a[1][1]

7) a[1][2]

8) a[1][3]

9) a[2][0]

10) a[2][1]

11) a[2][2]

12) a[2][3]

CSE351, Autumn 2022L16: Caches I

Locality Example #2

25

int sum_array_cols(int a[M][N])

{

int i, j, sum = 0;

for (j = 0; j < N; j++)

for (i = 0; i < M; i++)

sum += a[i][j];

return sum;

}

CSE351, Autumn 2022L16: Caches I

Locality Example #2

26

int sum_array_cols(int a[M][N])

{

int i, j, sum = 0;

for (j = 0; j < N; j++)

for (i = 0; i < M; i++)

sum += a[i][j];

return sum;

}

76 92 108

Layout in Memory

a

[0]

[0]

a

[0]

[1]

a

[0]

[2]

a

[0]

[3]

a

[1]

[0]

a

[1]

[1]

a

[1]

[2]

a

[1]

[3]

a

[2]

[0]

a

[2]

[1]

a

[2]

[2]

a

[2]

[3]

M = 3, N=4

a[0][0] a[0][1] a[0][2] a[0][3]

a[1][0] a[1][1] a[1][2] a[1][3]

a[2][0] a[2][1] a[2][2] a[2][3]

Access Pattern:
stride = ?

1) a[0][0]

2) a[1][0]

3) a[2][0]

4) a[0][1]

5) a[1][1]

6) a[2][1]

7) a[0][2]

8) a[1][2]

9) a[2][2]

10) a[0][3]

11) a[1][3]

12) a[2][3]

CSE351, Autumn 2022L16: Caches I

Locality Example #3

❖ What is wrong
with this code?

❖ How can it be
fixed?

27

int sum_array_3D(int a[M][N][L])

{

int i, j, k, sum = 0;

for (i = 0; i < N; i++)

for (j = 0; j < L; j++)

for (k = 0; k < M; k++)

sum += a[k][i][j];

return sum;

}

a[2][0][0] a[2][0][1] a[2][0][2] a[2][0][3]

a[2][1][0] a[2][1][1] a[2][1][2] a[2][1][3]

a[2][2][0] a[2][2][1] a[2][2][2] a[2][2][3]

a[1][0][0] a[1][0][1] a[1][0][2] a[1][0][3]

a[1][1][0] a[1][1][1] a[1][1][2] a[1][1][3]

a[1][2][0] a[1][2][1] a[1][2][2] a[1][2][3]

a[0][0][0] a[0][0][1] a[0][0][2] a[0][0][3]

a[0][1][0] a[0][1][1] a[0][1][2] a[0][1][3]

a[0][2][0] a[0][2][1] a[0][2][2] a[0][2][3] m = 0
m = 1

m = 2

CSE351, Autumn 2022L16: Caches I

Locality Example #3

28

⋅ ⋅ ⋅

int sum_array_3D(int a[M][N][L])

{

int i, j, k, sum = 0;

for (i = 0; i < N; i++)

for (j = 0; j < L; j++)

for (k = 0; k < M; k++)

sum += a[k][i][j];

return sum;

}

❖ What is wrong
with this code?

❖ How can it be
fixed?

Layout in Memory (M = ?, N = 3, L = 4)

a

[0]
[0]
[0]

a

[0]
[0]
[1]

a

[0]
[0]
[2]

a

[0]
[0]
[3]

a

[0]
[1]
[0]

a

[0]
[1]
[1]

a

[0]
[1]
[2]

a

[0]
[1]
[3]

a

[0]
[2]
[0]

a

[0]
[2]
[1]

a

[0]
[2]
[2]

a

[0]
[2]
[3]

a

[1]
[0]
[0]

a

[1]
[0]
[1]

a

[1]
[0]
[2]

a

[1]
[0]
[3]

a

[1]
[1]
[0]

a

[1]
[1]
[1]

a

[1]
[1]
[2]

a

[1]
[1]
[3]

a

[1]
[2]
[0]

a

[1]
[2]
[1]

a

[1]
[2]
[2]

a

[1]
[2]
[3]

76 92 108 124 140 156 172

CSE351, Autumn 2022L16: Caches I

Cache Performance Metrics (Review)

❖ Huge difference between a cache hit and a cache miss

▪ Could be 100x speed difference between accessing cache
and main memory (measured in clock cycles)

❖ Miss Rate (MR)

▪ Fraction of memory references not found in cache (misses /
accesses) = 1 - Hit Rate

❖ Hit Time (HT)

▪ Time to deliver a block in the cache to the processor
• Includes time to determine whether the block is in the cache

❖ Miss Penalty (MP)

▪ Additional time required because of a miss

29

CSE351, Autumn 2022L16: Caches I

Cache Performance (Review)

❖ Two things hurt the performance of a cache:

▪ Miss rate and miss penalty

❖ Average Memory Access Time (AMAT): average time
to access memory considering both hits and misses

AMAT = Hit time + Miss rate × Miss penalty

(abbreviated AMAT = HT + MR × MP)

❖ 99% hit rate twice as good as 97% hit rate!

▪ Assume HT of 1 clock cycle and MP of 100 clock cycles

▪ 97%: AMAT =

▪ 99%: AMAT =
30

CSE351, Autumn 2022L16: Caches I

Practice Question

❖ Processor specs: 200 ps clock, MP of 50 clock cycles,
MR of 0.02 misses/instruction, and HT of 1 clock cycle

AMAT =

❖ Which improvement would be best?

A. 190 ps clock

B. Miss penalty of 40 clock cycles

C. MR of 0.015 misses/instruction

31

CSE351, Autumn 2022L16: Caches I

Can we have more than one cache?

❖ Why would we want to do that?

▪ Avoid going to memory!

❖ Typical performance numbers:

▪ Miss Rate
• L1 MR = 3-10%

• L2 MR = Quite small (e.g., < 1%), depending on parameters, etc.

▪ Hit Time
• L1 HT = 4 clock cycles

• L2 HT = 10 clock cycles

▪ Miss Penalty
• P = 50-200 cycles for missing in L2 & going to main memory

• Trend: increasing!

32

CSE351, Autumn 2022L16: Caches I

An Example Memory Hierarchy

33

registers

on-chip L1
cache (SRAM)

main memory
(DRAM)

local secondary storage
(local disks)

Larger,
slower,
cheaper
per byte

remote secondary storage
(distributed file systems, web servers)

off-chip L2
cache (SRAM)

Smaller,
faster,
costlier
per byte

<1 ns

1 ns

5-10 ns

100 ns

150,000 ns

10,000,000 ns
(10 ms)

1-150 ms

SSD

Disk

5-10 s

1-2 min

15-30 min

31 days

66 months = 5.5 years

1 - 15 years

CSE351, Autumn 2022L16: Caches I

Summary

❖ Memory Hierarchy

▪ Successively higher levels contain “most used” data from
lower levels

▪ Exploits temporal and spatial locality

▪ Caches are intermediate storage levels used to optimize
data transfers between any system elements with different
characteristics

❖ Cache Performance

▪ Ideal case: found in cache (hit)

▪ Bad case: not found in cache (miss), search in next level

▪ Average Memory Access Time (AMAT) = HT + MR × MP
• Hurt by Miss Rate and Miss Penalty

34

