
CSE351, Autumn 2022L15: Buffer Overflows

Buffer Overflows
CSE 351 Autumn 2022

Instructor:
Justin Hsia

Teaching Assistants:
Angela Xu
Arjun Narendra
Armin Magness
Assaf Vayner
Carrie Hu
Clare Edmonds
David Dai
Dominick Ta
Effie Zheng
James Froelich
Jenny Peng
Kristina Lansang
Paul Stevans
Renee Ruan
Vincent Xiao

http://xkcd.com/1353/

Alt text: I looked at some of the data dumps from vulnerable sites, and
it was ... bad. I saw emails, passwords, password hints. SSL keys and
session cookies. Important servers brimming with visitor IPs. Attack
ships on fire off the shoulder of Orion, c-beams glittering in the dark
near the Tannhäuser Gate. I should probably patch OpenSSL.

http://xkcd.com/1513/

CSE351, Autumn 2022L15: Buffer Overflows

Relevant Course Information

❖ hw13 due Wednesday (11/2)

❖ hw15 due Monday (11/7)

❖ Lab 3 released today, due next Friday (11/11)

▪ You will have everything you need by the end of this lecture

❖ Midterm starts Thursday

▪ Instructions will be posted on Ed Discussion

▪ Gilligan’s Island Rule: discuss high-level concepts and give
hints, but not solving the problems together

▪ We will be available on Ed Discussion (private posts, please)
and office hours to answer clarifying questions

2

CSE351, Autumn 2022L15: Buffer Overflows

Buffer Overflows

❖ Address space layout review

❖ Input buffers on the stack

❖ Overflowing buffers and injecting code

❖ Defenses against buffer overflows

3

CSE351, Autumn 2022L15: Buffer Overflows

Review: General Memory Layout

❖ Stack

▪ Local variables (procedure context)

❖ Heap

▪ Dynamically allocated as needed

▪ new, malloc(), calloc(), …

❖ Statically-allocated Data
▪ Read/write: global variables (Static Data)

▪ Read-only: string literals (Literals)

❖ Code/Instructions

▪ Executable machine instructions

▪ Read-only

4

not drawn to scale

Instructions

Literals

Static Data

Heap

Stack

0

2N-1

CSE351, Autumn 2022L15: Buffer Overflows

Memory Allocation Example

5

char big_array[1L<<24]; /* 16 MB */

int global = 0;

int useless() { return 0; }

int main() {

void *p1, *p2;

int local = 0;

p1 = malloc(1L << 28); /* 256 MB */

p2 = malloc(1L << 8); /* 256 B */

/* Some print statements ... */

}

not drawn to scale

Where does everything go?
Instructions

Literals

Static Data

Heap

Stack

CSE351, Autumn 2022L15: Buffer Overflows

char big_array[1L<<24]; /* 16 MB */

int global = 0;

int useless() { return 0; }

int main() {

void *p1, *p2;

int local = 0;

p1 = malloc(1L << 28); /* 256 MB */

p2 = malloc(1L << 8); /* 256 B */

/* Some print statements ... */

}

Memory Allocation Example

6

not drawn to scale

Instructions

Literals

Static Data

Heap

Stack

Where does everything go?

CSE351, Autumn 2022L15: Buffer Overflows

What Is a Buffer?

❖ A buffer is an array used to temporarily store data

❖ You’ve probably seen “video buffering…”

▪ The video is being written into a buffer before being played

❖ Buffers can also store user input

7

CSE351, Autumn 2022L15: Buffer Overflows

Reminder: x86-64/Linux Stack Frame

❖ Caller’s Stack Frame
▪ Arguments (if > 6 args) for this call

❖ Current/ Callee Stack Frame
▪ Return address

• Pushed by call instruction

▪ Old frame pointer (optional)

▪ Caller-saved pushed before setting up
arguments for a function call

▪ Callee-saved pushed before using
long-term registers

▪ Local variables
(if can’t be kept in registers)

▪ “Argument build” area
(Need to call a function with >6
arguments? Put them here)

8

Return Addr

Saved
Registers

+
Local

Variables

Argument
Build

(Optional)

Old %rbp

Arguments
7, 8, …

Caller
Frame

Frame pointer
%rbp

Stack pointer
%rsp

(Optional)

Lower Addresses

Higher Addresses

CSE351, Autumn 2022L15: Buffer Overflows

Buffer Overflow in a Nutshell

❖ C does not check array bounds

▪ Many Unix/Linux/C functions don’t check argument sizes

▪ Allows overflowing (writing past the end) of buffers (arrays)

❖ “Buffer Overflow” = Writing past the end of an array

❖ Characteristics of the traditional Linux memory layout
provide opportunities for malicious programs

▪ Stack grows “backwards” in memory

▪ Data and instructions both stored in the same memory

9

CSE351, Autumn 2022L15: Buffer Overflows

Buffer Overflow in a Nutshell

❖ Stack grows down towards lower
addresses

❖ Buffer grows up towards higher
addresses

❖ If we write past the end of the
array, we overwrite data on the
stack!

10Lower Addresses

buf[0]

buf[7]

'\0'

'o'

'l'

'l'

'e'

'h'

Enter input: hello

00

00

00

00

00

40

dd

bf

Return
Address

Higher Addresses

No overflow ☺

CSE351, Autumn 2022L15: Buffer Overflows

Buffer Overflow in a Nutshell 00

00

00

00

00

40

dd

bf

❖ Stack grows down towards lower
addresses

❖ Buffer grows up towards higher
addresses

❖ If we write past the end of the
array, we overwrite data on the
stack!

11Lower Addresses

Higher Addresses

buf[0]

buf[7]

Return
Address

Enter input: helloabcdef

CSE351, Autumn 2022L15: Buffer Overflows

Buffer Overflow in a Nutshell 00

00

00

00

'\0'

'f'

'e'

'd'

❖ Stack grows down towards lower
addresses

❖ Buffer grows up towards higher
addresses

❖ If we write past the end of the
array, we overwrite data on the
stack!

12Lower Addresses

Higher Addresses

buf[0]

buf[7] 'c'

'b'

'a'

'o'

'l'

'l'

'e'

'h'

Return
Address

Enter input: helloabcdef

Buffer overflow!

CSE351, Autumn 2022L15: Buffer Overflows

Buffer Overflow in a Nutshell

❖ Buffer overflows on the stack can overwrite
“interesting” data

▪ Attackers just choose the right inputs

❖ Simplest form (sometimes called “stack smashing”)

▪ Unchecked length on string input into bounded array causes
overwriting of stack data

▪ Try to change the return address of the current procedure

❖ Why is this a big deal?

▪ It was the #1 technical cause of security vulnerabilities
• #1 overall cause is social engineering / user ignorance

13

CSE351, Autumn 2022L15: Buffer Overflows

String Library Code

❖ Implementation of Unix function gets()

▪ What could go wrong in this code?

14

/* Get string from stdin */

char* gets(char* dest) {

int c = getchar();

char* p = dest;

while (c != EOF && c != '\n') {

*p++ = c;

c = getchar();

}

*p = '\0';

return dest;

}

pointer to start
of an array

same as:
*p = c;

p++;

CSE351, Autumn 2022L15: Buffer Overflows

String Library Code

❖ Implementation of Unix function gets()

▪ No way to specify limit on number of characters to read

❖ Similar problems with other Unix functions:
▪ strcpy: Copies string of arbitrary length to a dst

▪ scanf, fscanf, sscanf, when given %s specifier
15

/* Get string from stdin */

char* gets(char* dest) {

int c = getchar();

char* p = dest;

while (c != EOF && c != '\n') {

*p++ = c;

c = getchar();

}

*p = '\0';

return dest;

}

CSE351, Autumn 2022L15: Buffer Overflows

Vulnerable Buffer Code

16

void call_echo() {

echo();

}

/* Echo Line */

void echo() {

char buf[8]; /* Way too small! */

gets(buf);

puts(buf);

}

unix> ./buf-nsp

Enter string: 123456789012345

123456789012345

unix> ./buf-nsp

Enter string: 1234567890123456

Segmentation fault (core dumped)

CSE351, Autumn 2022L15: Buffer Overflows

0000000000401146 <echo>:

401146: 48 83 ec 18 sub $0x18,%rsp

... ... calls printf ...

401159: 48 8d 7c 24 08 lea 0x8(%rsp),%rdi

40115e: b8 00 00 00 00 mov $0x0,%eax

401163: e8 e8 fe ff ff callq 401050 <gets@plt>

401168: 48 8d 7c 24 08 lea 0x8(%rsp),%rdi

40116d: e8 be fe ff ff callq 401030 <puts@plt>

401172: 48 83 c4 18 add $0x18,%rsp

401176: c3 retq

Buffer Overflow Disassembly (buf-nsp)

17

0000000000401177 <call_echo>:

401177: 48 83 ec 08 sub $0x8,%rsp

40117b: b8 00 00 00 00 mov $0x0,%eax

401180: e8 c1 ff ff ff callq 401146 <echo>

401185: 48 83 c4 08 add $0x8,%rsp

401189: c3 retq

call_echo:

echo:

return address

CSE351, Autumn 2022L15: Buffer Overflows

Buffer Overflow Stack

18

echo:

subq $24, %rsp

...

leaq 8(%rsp), %rdi

mov $0x0,%eax

call gets

...

/* Echo Line */

void echo()

{

char buf[8]; /* Way too small! */

gets(buf);

puts(buf);

}

Before call to gets

Stack frame for
call_echo

Return address
(8 bytes)

8 bytes unused

[7] [6] [5] [4]

[3] [2] [1] [0]

8 bytes unused

buf

⟵%rsp

Note: addresses increasing right-to-left, bottom-to-top

CSE351, Autumn 2022L15: Buffer Overflows

Buffer Overflow Example

19

void echo()

{

char buf[8];

gets(buf);

. . .

}

. . .

401180: callq 401146 <echo>

401185: add $0x8,%rsp

. . .

call_echo:

Before call to gets

Stack frame for
call_echo

00 00 00 00

00 40 11 85

8 bytes unused

[7] [6] [5] [4]

[3] [2] [1] [0]

8 bytes unused

buf

⟵%rsp

echo:

subq $24, %rsp

...

leaq 8(%rsp), %rdi

mov $0x0,%eax

call gets

...

CSE351, Autumn 2022L15: Buffer Overflows

Buffer Overflow Example #1

20

unix> ./buf-nsp

Enter string: 123456789012345

123456789012345

Overflowed buffer, but did not corrupt state

Stack frame for
call_echo

00 00 00 00

00 40 11 85

00 35 34 33

32 31 30 39

38 37 36 35

34 33 32 31

8 bytes unused

call_echo:

After call to gets

Note: Digit “𝑁” is
just 0x3𝑁 in ASCII!

void echo()

{

char buf[8];

gets(buf);

. . .

}

buf

⟵%rsp

echo:

subq $24, %rsp

...

leaq 8(%rsp), %rdi

mov $0x0,%eax

call gets

...

. . .

401180: callq 401146 <echo>

401185: add $0x8,%rsp

. . .

CSE351, Autumn 2022L15: Buffer Overflows

Buffer Overflow Example #2

21

unix> ./buf-nsp

Enter string: 1234567890123456

Segmentation fault (core dumped)

Overflowed buffer and corrupted return pointer

call_echo:

After call to gets
void echo()

{

char buf[8];

gets(buf);

. . .

}

buf

⟵%rsp

Stack frame for
call_echo

00 00 00 00

00 40 11 00

36 35 34 33

32 31 30 39

38 37 36 35

34 33 32 31

8 bytes unused

echo:

subq $24, %rsp

...

leaq 8(%rsp), %rdi

mov $0x0,%eax

call gets

...

. . .

401180: callq 401146 <echo>

401185: add $0x8,%rsp

. . .

CSE351, Autumn 2022L15: Buffer Overflows

Buffer Overflow Example #2 Explained

22

00000000004010d0 <register_tm_clones>:

4010d0: lea 0x2f61(%rip),%rdi

4010d7: lea 0x2f5a(%rip),%rsi

4010de: sub %rdi,%rsi

4010e1: mov %rsi,%rax

4010e4: shr $0x3f,%rsi

4010e8: sar $0x3,%rax

4010ec: add %rax,%rsi

4010ef: sar %rsi

4010f2: je 401108

4010f4: mov 0x2efd(%rip),%rax

4010fb: test %rax,%rax

4010fe: je 401108

401100: jmpq *%rax

401102: nopw 0x0(%rax,%rax,1)

401108: retq

“Returns” to a valid instruction, but bad indirect jump
so program signals SIGSEGV, Segmentation fault

⟵%rsp

After return from echo

buf

Stack frame for
call_echo

00 00 00 00

00 40 11 00

36 35 34 33

32 31 30 39

38 37 36 35

34 33 32 31

8 bytes unused

CSE351, Autumn 2022L15: Buffer Overflows

Malicious Use of Buffer Overflow:
Code Injection Attacks

❖ Input string contains byte representation of executable code

❖ Overwrite return address A with address of buffer B

❖ When bar() executes ret, will jump to exploit code
23

int bar() {

char buf[64];

gets(buf);

...

return ...;

}

void foo(){

bar();

A:...

}

return address A

Stack after call to gets()

A (return addr)

foo

stack frame

bar

stack frame

B

data written
by gets()

High Addresses

buf starts here
exploit code

pad

Low Addresses

A B

CSE351, Autumn 2022L15: Buffer Overflows

Practice Question

❖ smash_me is vulnerable to stack smashing!

❖ What is the minimum number of characters that
gets must read in order for us to change the return
address to a stack address?

▪ For example: (0x00 00 7f ff ca fe f0 0d)

24

Previous
stack frame

00 00 00 00

00 40 05 d1

. . .

[0]

smash_me:

subq $0x40, %rsp

...

leaq 16(%rsp), %rdi

call gets

...

A. 27
B. 30
C. 51
D. 54
E. We’re lost…

CSE351, Autumn 2022L15: Buffer Overflows

Exploits Based on Buffer Overflows

❖ Distressingly common in real programs

▪ Programmers keep making the same mistakes

▪ Recent measures make these attacks much more difficult

❖ Examples across the decades

▪ Original “Internet worm” (1988)

▪ Heartbleed (2014, affected 17% of servers)
• Similar issue in Cloudbleed (2017)

▪ Hacking embedded devices
• Cars, Smart homes, Planes

25

Buffer overflow bugs can allow attackers to
execute arbitrary code on victim machines

CSE351, Autumn 2022L15: Buffer Overflows

Example: the original Internet worm (1988)

❖ Exploited a few vulnerabilities to spread
▪ Early versions of the finger server (fingerd) used gets()

to read the argument sent by the client:
• finger droh@cs.cmu.edu

▪ Worm attacked fingerd server with phony argument:
• finger "exploit-code padding new-return-addr"

• Exploit code: executed a root shell on the victim machine with a
direct connection to the attacker

❖ Scanned for other machines to attack

▪ Invaded ~6000 computers in hours (10% of the Internet)
• see June 1989 article in Comm. of the ACM

▪ The author of the worm (Robert Morris*) was prosecuted…

26

http://dl.acm.org/citation.cfm?id=66095

CSE351, Autumn 2022L15: Buffer Overflows

Example: Heartbleed (2014)

27

CSE351, Autumn 2022L15: Buffer Overflows

Example: Heartbleed (2014)

28

CSE351, Autumn 2022L15: Buffer Overflows

Example: Heartbleed (2014)

29

CSE351, Autumn 2022L15: Buffer Overflows

Heartbleed Details

❖ Buffer over-read in OpenSSL
▪ Open source security library

▪ Bug in a small range of versions

❖ “Heartbeat” packet
▪ Specifies length of message

▪ Server echoes it back

▪ Library just “trusted” this length

▪ Allowed attackers to read contents
of memory anywhere they wanted

❖ Est. 17% of Internet affected
▪ “Catastrophic”

▪ Github, Yahoo, Stack Overflow,
Amazon AWS, ...

30

By FenixFeather - Own work, CC BY-SA 3.0,
https://commons.wikimedia.org/w/index.php?curid=32276981

CSE351, Autumn 2022L15: Buffer Overflows

❖ UW CSE research demonstrated wirelessly hacking a
car using buffer overflow

▪ http://www.autosec.org/pubs/cars-oakland2010.pdf

❖ Overwrote the onboard control system’s code

▪ Disable brakes, unlock doors, turn engine on/off

Hacking Cars (2010)

31

http://www.autosec.org/pubs/cars-oakland2010.pdf

CSE351, Autumn 2022L15: Buffer Overflows

Hacking DNA Sequencing Tech (2017)

▪ Potential for malicious code to be encoded in DNA!

▪ Attacker can gain control of DNA sequencing machine when
malicious DNA is read

▪ Ney et al. (2017): https://dnasec.cs.washington.edu/

32

https://dnasec.cs.washington.edu/

CSE351, Autumn 2022L15: Buffer Overflows

Dealing with buffer overflow attacks

1) Employ system-level protections

2) Avoid overflow vulnerabilities

3) Have compiler use “stack canaries”

33

CSE351, Autumn 2022L15: Buffer Overflows

1) System-Level Protections

❖ Non-executable code segments

❖ In traditional x86, can mark region
of memory as either “read-only” or
“writeable”

▪ Can execute anything readable

❖ x86-64 added explicit
“execute” permission

❖ Stack marked as non-executable

▪ Do NOT execute code in Stack, Static
Data, or Heap regions

▪ Hardware support needed

34

Stack after call
to gets()

B

foo
stack
frame

bar
stack
frame

B

exploit
code

paddata written
by gets()

Any attempt to execute this code will fail

CSE351, Autumn 2022L15: Buffer Overflows

1) System-Level Protections

❖ Non-executable code segments

▪ Wait, doesn’t this fix everything?

❖ Works well, but can’t always use it

❖ Many embedded devices do not
have this protection

▪ e.g., cars, smart homes,
pacemakers

❖ Some exploits still work!

▪ Return-oriented programming

▪ Return to libc attack

▪ JIT-spray attack

35

Stack after call
to gets()

B

foo
stack
frame

bar
stack
frame

B

exploit
code

paddata written
by gets()

Any attempt to execute this code will fail

CSE351, Autumn 2022L15: Buffer Overflows

1) System-Level Protections

❖ Randomized stack offsets
▪ At start of program, allocate random amount

of space on stack

▪ Shifts stack addresses for entire program

• Addresses will vary from one run to another

▪ Makes it difficult for hacker to predict
beginning of inserted code

❖ Example: Address of variable local for
when Slide 5 code executed 3 times:

• 0x7ffd19d3f8ac

• 0x7ffe8a462c2c

• 0x7ffe927c905c

▪ Stack repositioned each time program executes

36

main’s
stack frame

Other
functions’

stack frames

Random
allocation

B?

B?

exploit
code

pad

Low Addresses

High Addresses

CSE351, Autumn 2022L15: Buffer Overflows

2) Avoid Overflow Vulnerabilities in Code

❖ Use library routines that limit string lengths
▪ fgets instead of gets (2nd argument to fgets sets limit)

▪ strncpy instead of strcpy

▪ Don’t use scanf with %s conversion specification
• Use fgets to read the string

• Or use %ns where n is a suitable integer

37

/* Echo Line */

void echo()

{

char buf[8]; /* Way too small! */

fgets(buf, 8, stdin);

puts(buf);

}

CSE351, Autumn 2022L15: Buffer Overflows

2) Avoid Overflow Vulnerabilities in Code

❖ Alternatively, don’t use C - use a language that does
array index bounds check

▪ Buffer overflow is impossible in Java

• ArrayIndexOutOfBoundsException

▪ Rust language was designed with security in mind

• Panics on index out of bounds, plus more protections

38

CSE351, Autumn 2022L15: Buffer Overflows

3) Stack Canaries

❖ Basic Idea: place special value (“canary”) on stack just
beyond buffer

▪ Secret value that is randomized before main()

▪ Placed between buffer and return address

▪ Check for corruption before exiting function

❖ GCC implementation
▪ -fstack-protector

39

unix>./buf

Enter string: 12345678

12345678

unix> ./buf

Enter string: 123456789

*** stack smashing detected ***

CSE351, Autumn 2022L15: Buffer Overflows

Protected Buffer Disassembly (buf)

40

401156: push %rbx

401157: sub $0x10,%rsp

40115b: mov $0x28,%ebx

401160: mov %fs:(%rbx),%rax

401164: mov %rax,0x8(%rsp)

401169: xor %eax,%eax

... ... call printf ...

40117d: callq 401060 <gets@plt>

401182: mov %rsp,%rdi

401185: callq 401030 <puts@plt>

40118a: mov 0x8(%rsp),%rax

40118f: xor %fs:(%rbx),%rax

401193: jne 40119b <echo+0x45>

401195: add $0x10,%rsp

401199: pop %rbx

40119a: retq

40119b: callq 401040 <__stack_chk_fail@plt>

echo:

This is extra
(non-testable)

material

CSE351, Autumn 2022L15: Buffer Overflows

Setting Up Canary

41

echo:

. . .

movq %fs:40, %rax # Get canary

movq %rax, 8(%rsp) # Place on stack

xorl %eax, %eax # Erase canary

. . .

/* Echo Line */

void echo()

{

char buf[8]; /* Way too small! */

gets(buf);

puts(buf);

}

Segment register
(don’t worry about it)

Before call to gets

This is extra
(non-testable)

material

Stack frame for
call_echo

Return address
(8 bytes)

Canary
(8 bytes)

[7][6][5][4]

[3][2][1][0] buf ⟵%rsp

CSE351, Autumn 2022L15: Buffer Overflows

Checking Canary

42

echo:

. . .

movq 8(%rsp), %rax # retrieve from Stack

xorq %fs:40, %rax # compare to canary

jne .L4 # if not same, FAIL

. . .

.L4: call __stack_chk_fail

Input: 1234567

Stack frame for
call_echo

Return address
(8 bytes)

Canary
(8 bytes)

00 37 36 35

34 33 32 31

After call to gets
/* Echo Line */

void echo()

{

char buf[8]; /* Way too small! */

gets(buf);

puts(buf);

}

This is extra
(non-testable)

material

buf ⟵%rsp

CSE351, Autumn 2022L15: Buffer Overflows

Summary of Prevention Measures

1) Employ system-level protections

▪ Code on the Stack is not executable

▪ Randomized Stack offsets

2) Avoid overflow vulnerabilities

▪ Use library routines that limit string lengths

▪ Use a language that makes them impossible

3) Have compiler use “stack canaries”

43

CSE351, Autumn 2022L15: Buffer Overflows

Think this is cool?

❖ You’ll love Lab 3 😉

▪ Released today, due next Friday

▪ Some parts must be run through GDB to disable certain
security features

❖ Take CSE 484 (Security)

▪ Several different kinds of buffer overflow exploits

▪ Many ways to counter them

❖ Nintendo fun!

▪ Using glitches to rewrite code:
https://www.youtube.com/watch?v=TqK‐2jUQBUY

▪ Flappy Bird in Mario:
https://www.youtube.com/watch?v=hB6eY73sLV0

44

https://www.youtube.com/watch?v=TqK‐2jUQBUY
https://www.youtube.com/watch?v=hB6eY73sLV0

CSE351, Autumn 2022L15: Buffer Overflows

Discussion Questions

❖ In Lab 3, you will run a buffer overflow code injection
attack; students love this lab because it “makes you
feel like a hacker”

▪ What connotations (i.e., ideas or feelings evoked) does this
statement carry for you and where do those come from?

▪ While it is easy to say that you should not exploit security
vulnerabilities, does the target of an attack change how you
feel about it? Why?

45

