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Relevant Course Information

❖ Lab 1a regrade requests open on Gradescope

❖ Lab 1b submissions close tonight

❖ Lab 2 due next Friday (10/28)

❖ Section tomorrow on Assembly

▪ Use the midterm reference sheet, bring your laptop!

▪ Optional GDB Tutorial slides and Lab 2 phase 1 walkthrough

❖ Midterm (take home, 11/3–11/5)

▪ Make notes and use the midterm reference sheet

▪ Form study groups and look at past exams!
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https://courses.cs.washington.edu/courses/cse351/20au/exams/ref-mt.pdf
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Move extension:  movz/movs (Review)

movz__ src, regDest # Move with zero extension

movs__ src, regDest # Move with sign extension

▪ Copy from a smaller source value to a larger destination

▪ Source can be memory or register;  Destination must be a register

▪ Fill remaining bits of dest with zero (movz) or sign bit (movs)

movzSD / movsSD:

S – size of source (b = 1 byte, w = 2)

D – size of dest (w = 2 bytes, l = 4, q = 8)

Example: 

movzbq %al, %rbx
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0x?? 0x?? 0x?? 0x?? 0x?? 0x?? 0x?? 0xFF ←%rax

0x00 0x00 0x00 0x00 0x00 0x00 0x00 0xFF ←%rbx
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Move extension:  movz/movs (Review)

movz__ src, regDest # Move with zero extension

movs__ src, regDest # Move with sign extension

▪ Copy from a smaller source value to a larger destination

▪ Source can be memory or register;  Destination must be a register

▪ Fill remaining bits of dest with zero (movz) or sign bit (movs)

movzSD / movsSD:

S – size of source (b = 1 byte, w = 2)

D – size of dest (w = 2 bytes, l = 4, q = 8)

Example: 

movsbl (%rax), %ebx
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Note: In x86-64, any instruction that 
generates a 32-bit (long word) value 
for a register also sets the high-order 
portion of the register to 0. Good 
example on p. 184 in the textbook.

Copy 1 byte from memory into 
8-byte register & sign extend it

0x00 0x00 0x7F 0xFF 0xC6 0x1F 0xA4 0xE8 ←%rax

0x00 0x00 0x00 0x00 0xFF 0xFF 0xFF 0x80 ←%rbx

... 0x?? 0x?? 0x80 0x?? 0x?? 0x?? ... ← MEM
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GDB Demo

❖ The and examples on a real machine!
▪

▪

❖ You will need to use GDB to get through Lab 2

▪ Useful debugger in this class and beyond!

❖ Pay attention to:

▪ Setting breakpoints ( )

▪ Stepping through code ( / and / )

▪ Printing out expressions ( – works with regs & vars)

▪ Examining memory ( )
5
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x86 Control Flow

❖ Condition codes

❖ Conditional and unconditional branches

❖ Loops

❖ Switches

6
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Processor State (x86-64, partial)

❖ Information about 
currently executing 
program

▪ Temporary data
( %rax, … )

▪ Location of runtime 
stack ( %rsp )

▪ Location of current 
code control point
( %rip, … )

▪ Status of recent tests
( CF, ZF, SF, OF )

• Single bit registers:
7

%rip

current top of the Stack

Program Counter
(instruction pointer)

CF ZF SF OF Condition Codes

Registers

%rsp

%r8

%r9

%r10

%r11

%r12

%r13

%r14

%r15

%rax

%rbx

%rcx

%rdx

%rsi

%rdi

%rbp
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Condition Codes (Implicit, RD9)

❖ Implicitly set by arithmetic operations

▪ (think of it as side effects)

▪ Example:   addq src, dst ↔ r = d+s

▪ CF=1 if carry out from MSB (unsigned overflow)

▪ ZF=1 if  r==0

▪ SF=1 if  r<0 (if MSB is 1)

▪ OF=1 if signed overflow
(s>0 && d>0 && r<0)||(s<0 && d<0 && r>=0)

▪

8

Not set by lea instruction (beware!)

CF ZF SF OFCarry Flag Zero Flag Sign Flag Overflow Flag



CSE351, Autumn 2022L10:  x86-64 Programming III

Condition Codes (Explicit: Compare, RD9)

❖ Explicitly set by Compare instruction
▪ cmpq src1, src2

▪ cmpq a, b sets flags based on b-a, but doesn’t store

▪ CF=1 if carry out from MSB (good for unsigned comparison)

▪ ZF=1 if  a==b

▪ SF=1 if  (b-a)<0 (if MSB is 1)

▪ OF=1 if signed overflow
(a>0 && b<0 && (b-a)>0) || 

(a<0 && b>0 && (b-a)<0)
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CF ZF SF OFCarry Flag Zero Flag Sign Flag Overflow Flag
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Condition Codes (Explicit: Test, RD9)

❖ Explicitly set by Test instruction
▪ testq src2, src1

▪ testq a, b sets flags based on a&b, but doesn’t store

• Useful to have one of the operands be a mask

▪ Can’t have carry out (CF) or overflow (OF)

▪ ZF=1 if  a&b==0

▪ SF=1 if  a&b<0 (signed)

10

CF ZF SF OFCarry Flag Zero Flag Sign Flag Overflow Flag
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Example Condition Code Setting

❖ Assuming that and , which 
flags (CF, ZF, SF, OF) are set when we execute 

?

11
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Using Condition Codes:  Jumping (RD9)

❖ j* Instructions

▪ Jumps to target (an address) based on condition codes

12

Instruction Condition Description

jmp target 1 Unconditional

je  target ZF Equal / Zero

jne target ~ZF Not Equal / Not Zero

js target SF Negative

jns target ~SF Nonnegative

jg target ~(SF^OF)&~ZF Greater (Signed)

jge target ~(SF^OF) Greater or Equal (Signed)

jl target (SF^OF) Less (Signed)

jle target (SF^OF)|ZF Less or Equal (Signed)

ja  target ~CF&~ZF Above (unsigned “>”)

jb target CF Below (unsigned “<“)
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Using Condition Codes:  Setting (RD9)

❖ set* Instructions

▪ Set low-order byte of dst to 0 or 1 based on condition codes

▪ Does not alter remaining 7 bytes

13

Instruction Condition Description

sete dst ZF Equal / Zero

setne dst ~ZF Not Equal / Not Zero

sets  dst SF Negative

setns dst ~SF Nonnegative

setg dst ~(SF^OF)&~ZF Greater (Signed)

setge dst ~(SF^OF) Greater or Equal (Signed)

setl dst (SF^OF) Less (Signed)

setle dst (SF^OF)|ZF Less or Equal (Signed)

seta  dst ~CF&~ZF Above (unsigned “>”)

setb dst CF Below (unsigned “<”)
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Reading Condition Codes

❖ set* Instructions

▪ Set a low-order byte to 0 or 1 based on condition codes

▪ Operand is byte register (e.g., %al) or a byte in memory

▪ Do not alter remaining bytes in register
• Typically use movzbl (zero-extended mov) to finish job
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int gt(long x, long y)

{

return x > y;

}

Register Use(s)

%rdi 1st argument (x)

%rsi 2nd argument (y)

%rax return value

cmpq   %rsi, %rdi   #

setg   %al          #

movzbl %al, %eax    #

ret
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Choosing instructions for conditionals

❖ All arithmetic instructions set condition flags based on result of 
operation (op)

▪ Conditionals are comparisons against 0

❖ Come in instruction pairs

15

“Equal”

“Not equal”

“Sign” (negative)

(non-negative)

“Greater”

“Greater or equal”

“Less”

”Less or equal”

“Above” (unsigned >)

“Below” (unsigned <)
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Choosing instructions for conditionals

❖ Reminder:  cmp is like sub, test is like and

▪ Result is not stored anywhere

16

“Equal”

“Not equal”

“Sign” (negative)

(non-negative)

“Greater”

“Greater or equal”

“Less”

”Less or equal”

“Above” (unsigned >)

“Below” (unsigned <)
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“Equal”

“Not equal”

“Sign” (negative)

(non-negative)

“Greater”

“Greater or equal”

“Less”

”Less or equal”

“Above” (unsigned >)

“Below” (unsigned <)

Choosing instructions for conditionals

17

Register Use(s)

argument 

argument 

return value
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Practice Question 1

A.

B.

C.

D.

E. We’re lost…

18

Register Use(s)

1st argument ( )

2nd argument ( )

return value

__________________

__________________
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Reading Review

❖ Terminology:

▪ Label, jump target

▪ Program counter

▪ Jump table, indirect jump

❖ Questions from the Reading?

19
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Labels

❖ A jump changes the program counter ( )

▪ tells the CPU the address of the next instruction to execute

❖ Labels give us a way to refer to a specific instruction in 
our assembly/machine code

▪ Associated with the next instruction found in the assembly code 
(ignores whitespace)

▪ Each use of the label will eventually be replaced with something 
that indicates the final address of the instruction that it is 
associated with 20
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x86 Control Flow

❖ Condition codes

❖ Conditional and unconditional branches

❖ Loops

❖ Switches

21
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Expressing with Goto Code

❖ C allows as means of transferring control ( )
▪ Closer to assembly programming style

▪ Generally considered bad coding style

22
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Compiling Loops (Review)

❖ Other loops compiled similarly

▪ Will show variations and complications in coming slides, but 
may skip a few examples in the interest of time

❖ Most important to consider:

▪ When should conditionals be evaluated? (while vs. do-while)

▪ How much jumping is involved?

23

Assembly code:C/Java code:
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Compiling Loops (Review)

24

x86-64:C:

Do-while Loop:

While Loop:

C: x86-64:

While Loop (ver. 2):

C: x86-64:
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For-Loop →While-Loop

25

Init;

while (Test) {

Body

Update;

}

While-Loop Version:

Caveat:  C and Java have 
break and continue

• Conversion works fine for break

• Jump to same label as loop 
exit condition

• But not continue: would skip 
doing Update, which it should 
do with for-loops

• Introduce new label at 
Update

for (Init; Test; Update) {

Body

}

For-Loop:
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Practice Question 2

❖ The following is assembly code for a for-loop; identify 
the corresponding parts (Init, Test, Update)
▪ → → →

______ ______ ______
26
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Summary

❖ Control flow in x86 determined by Condition Codes

▪ Showed Carry, Zero, Sign, and Overflow, though others exist 

▪ Set flags with arithmetic instructions (implicit) or Compare 
and Test (explicit)

▪ Set instructions read out flag values

▪ Jump instructions use flag values to determine next 
instruction to execute

▪ Most control flow constructs (e.g., if-else, for-loop, while-
loop) can be implemented in assembly using combinations 
of conditional and unconditional jumps

27

https://en.wikipedia.org/wiki/Status_register#Common_flags

