
CSE351, Autumn 2022L10: x86-64 Programming III

x86-64 Programming III
CSE 351 Autumn 2022

Instructor:
Justin Hsia

Teaching Assistants:
Angela Xu
Arjun Narendra
Armin Magness
Assaf Vayner
Carrie Hu
Clare Edmonds
David Dai
Dominick Ta
Effie Zheng
James Froelich
Jenny Peng
Kristina Lansang
Paul Stevans
Renee Ruan
Vincent Xiao http://xkcd.com/1652/

http://xkcd.com/1652/

CSE351, Autumn 2022L10: x86-64 Programming III

Relevant Course Information

❖ Lab 1a regrade requests open on Gradescope

❖ Lab 1b submissions close tonight

❖ Lab 2 due next Friday (10/28)

❖ Section tomorrow on Assembly

▪ Use the midterm reference sheet, bring your laptop!

▪ Optional GDB Tutorial slides and Lab 2 phase 1 walkthrough

❖ Midterm (take home, 11/3–11/5)

▪ Make notes and use the midterm reference sheet

▪ Form study groups and look at past exams!

2

https://courses.cs.washington.edu/courses/cse351/20au/exams/ref-mt.pdf

CSE351, Autumn 2022L10: x86-64 Programming III

Move extension: movz/movs (Review)

movz__ src, regDest # Move with zero extension

movs__ src, regDest # Move with sign extension

▪ Copy from a smaller source value to a larger destination

▪ Source can be memory or register; Destination must be a register

▪ Fill remaining bits of dest with zero (movz) or sign bit (movs)

movzSD / movsSD:

S – size of source (b = 1 byte, w = 2)

D – size of dest (w = 2 bytes, l = 4, q = 8)

Example:

movzbq %al, %rbx

3

0x?? 0x?? 0x?? 0x?? 0x?? 0x?? 0x?? 0xFF ←%rax

0x00 0x00 0x00 0x00 0x00 0x00 0x00 0xFF ←%rbx

CSE351, Autumn 2022L10: x86-64 Programming III

Move extension: movz/movs (Review)

movz__ src, regDest # Move with zero extension

movs__ src, regDest # Move with sign extension

▪ Copy from a smaller source value to a larger destination

▪ Source can be memory or register; Destination must be a register

▪ Fill remaining bits of dest with zero (movz) or sign bit (movs)

movzSD / movsSD:

S – size of source (b = 1 byte, w = 2)

D – size of dest (w = 2 bytes, l = 4, q = 8)

Example:

movsbl (%rax), %ebx

4

Note: In x86-64, any instruction that
generates a 32-bit (long word) value
for a register also sets the high-order
portion of the register to 0. Good
example on p. 184 in the textbook.

Copy 1 byte from memory into
8-byte register & sign extend it

0x00 0x00 0x7F 0xFF 0xC6 0x1F 0xA4 0xE8 ←%rax

0x00 0x00 0x00 0x00 0xFF 0xFF 0xFF 0x80 ←%rbx

... 0x?? 0x?? 0x80 0x?? 0x?? 0x?? ... ← MEM

CSE351, Autumn 2022L10: x86-64 Programming III

GDB Demo

❖ The and examples on a real machine!
▪

▪

❖ You will need to use GDB to get through Lab 2

▪ Useful debugger in this class and beyond!

❖ Pay attention to:

▪ Setting breakpoints ()

▪ Stepping through code (/ and /)

▪ Printing out expressions (– works with regs & vars)

▪ Examining memory ()
5

CSE351, Autumn 2022L10: x86-64 Programming III

x86 Control Flow

❖ Condition codes

❖ Conditional and unconditional branches

❖ Loops

❖ Switches

6

CSE351, Autumn 2022L10: x86-64 Programming III

Processor State (x86-64, partial)

❖ Information about
currently executing
program

▪ Temporary data
(%rax, …)

▪ Location of runtime
stack (%rsp)

▪ Location of current
code control point
(%rip, …)

▪ Status of recent tests
(CF, ZF, SF, OF)

• Single bit registers:
7

%rip

current top of the Stack

Program Counter
(instruction pointer)

CF ZF SF OF Condition Codes

Registers

%rsp

%r8

%r9

%r10

%r11

%r12

%r13

%r14

%r15

%rax

%rbx

%rcx

%rdx

%rsi

%rdi

%rbp

CSE351, Autumn 2022L10: x86-64 Programming III

Condition Codes (Implicit, RD9)

❖ Implicitly set by arithmetic operations

▪ (think of it as side effects)

▪ Example: addq src, dst ↔ r = d+s

▪ CF=1 if carry out from MSB (unsigned overflow)

▪ ZF=1 if r==0

▪ SF=1 if r<0 (if MSB is 1)

▪ OF=1 if signed overflow
(s>0 && d>0 && r<0)||(s<0 && d<0 && r>=0)

▪

8

Not set by lea instruction (beware!)

CF ZF SF OFCarry Flag Zero Flag Sign Flag Overflow Flag

CSE351, Autumn 2022L10: x86-64 Programming III

Condition Codes (Explicit: Compare, RD9)

❖ Explicitly set by Compare instruction
▪ cmpq src1, src2

▪ cmpq a, b sets flags based on b-a, but doesn’t store

▪ CF=1 if carry out from MSB (good for unsigned comparison)

▪ ZF=1 if a==b

▪ SF=1 if (b-a)<0 (if MSB is 1)

▪ OF=1 if signed overflow
(a>0 && b<0 && (b-a)>0) ||

(a<0 && b>0 && (b-a)<0)

9

CF ZF SF OFCarry Flag Zero Flag Sign Flag Overflow Flag

CSE351, Autumn 2022L10: x86-64 Programming III

Condition Codes (Explicit: Test, RD9)

❖ Explicitly set by Test instruction
▪ testq src2, src1

▪ testq a, b sets flags based on a&b, but doesn’t store

• Useful to have one of the operands be a mask

▪ Can’t have carry out (CF) or overflow (OF)

▪ ZF=1 if a&b==0

▪ SF=1 if a&b<0 (signed)

10

CF ZF SF OFCarry Flag Zero Flag Sign Flag Overflow Flag

CSE351, Autumn 2022L10: x86-64 Programming III

Example Condition Code Setting

❖ Assuming that and , which
flags (CF, ZF, SF, OF) are set when we execute

?

11

CSE351, Autumn 2022L10: x86-64 Programming III

Using Condition Codes: Jumping (RD9)

❖ j* Instructions

▪ Jumps to target (an address) based on condition codes

12

Instruction Condition Description

jmp target 1 Unconditional

je target ZF Equal / Zero

jne target ~ZF Not Equal / Not Zero

js target SF Negative

jns target ~SF Nonnegative

jg target ~(SF^OF)&~ZF Greater (Signed)

jge target ~(SF^OF) Greater or Equal (Signed)

jl target (SF^OF) Less (Signed)

jle target (SF^OF)|ZF Less or Equal (Signed)

ja target ~CF&~ZF Above (unsigned “>”)

jb target CF Below (unsigned “<“)

CSE351, Autumn 2022L10: x86-64 Programming III

Using Condition Codes: Setting (RD9)

❖ set* Instructions

▪ Set low-order byte of dst to 0 or 1 based on condition codes

▪ Does not alter remaining 7 bytes

13

Instruction Condition Description

sete dst ZF Equal / Zero

setne dst ~ZF Not Equal / Not Zero

sets dst SF Negative

setns dst ~SF Nonnegative

setg dst ~(SF^OF)&~ZF Greater (Signed)

setge dst ~(SF^OF) Greater or Equal (Signed)

setl dst (SF^OF) Less (Signed)

setle dst (SF^OF)|ZF Less or Equal (Signed)

seta dst ~CF&~ZF Above (unsigned “>”)

setb dst CF Below (unsigned “<”)

CSE351, Autumn 2022L10: x86-64 Programming III

Reading Condition Codes

❖ set* Instructions

▪ Set a low-order byte to 0 or 1 based on condition codes

▪ Operand is byte register (e.g., %al) or a byte in memory

▪ Do not alter remaining bytes in register
• Typically use movzbl (zero-extended mov) to finish job

14

int gt(long x, long y)

{

return x > y;

}

Register Use(s)

%rdi 1st argument (x)

%rsi 2nd argument (y)

%rax return value

cmpq %rsi, %rdi #

setg %al #

movzbl %al, %eax #

ret

CSE351, Autumn 2022L10: x86-64 Programming III

Choosing instructions for conditionals

❖ All arithmetic instructions set condition flags based on result of
operation (op)

▪ Conditionals are comparisons against 0

❖ Come in instruction pairs

15

“Equal”

“Not equal”

“Sign” (negative)

(non-negative)

“Greater”

“Greater or equal”

“Less”

”Less or equal”

“Above” (unsigned >)

“Below” (unsigned <)

CSE351, Autumn 2022L10: x86-64 Programming III

Choosing instructions for conditionals

❖ Reminder: cmp is like sub, test is like and

▪ Result is not stored anywhere

16

“Equal”

“Not equal”

“Sign” (negative)

(non-negative)

“Greater”

“Greater or equal”

“Less”

”Less or equal”

“Above” (unsigned >)

“Below” (unsigned <)

CSE351, Autumn 2022L10: x86-64 Programming III

“Equal”

“Not equal”

“Sign” (negative)

(non-negative)

“Greater”

“Greater or equal”

“Less”

”Less or equal”

“Above” (unsigned >)

“Below” (unsigned <)

Choosing instructions for conditionals

17

Register Use(s)

argument

argument

return value

CSE351, Autumn 2022L10: x86-64 Programming III

Practice Question 1

A.

B.

C.

D.

E. We’re lost…

18

Register Use(s)

1st argument ()

2nd argument ()

return value

CSE351, Autumn 2022L10: x86-64 Programming III

Reading Review

❖ Terminology:

▪ Label, jump target

▪ Program counter

▪ Jump table, indirect jump

❖ Questions from the Reading?

19

CSE351, Autumn 2022L10: x86-64 Programming III

Labels

❖ A jump changes the program counter ()

▪ tells the CPU the address of the next instruction to execute

❖ Labels give us a way to refer to a specific instruction in
our assembly/machine code

▪ Associated with the next instruction found in the assembly code
(ignores whitespace)

▪ Each use of the label will eventually be replaced with something
that indicates the final address of the instruction that it is
associated with 20

CSE351, Autumn 2022L10: x86-64 Programming III

x86 Control Flow

❖ Condition codes

❖ Conditional and unconditional branches

❖ Loops

❖ Switches

21

CSE351, Autumn 2022L10: x86-64 Programming III

Expressing with Goto Code

❖ C allows as means of transferring control ()
▪ Closer to assembly programming style

▪ Generally considered bad coding style

22

CSE351, Autumn 2022L10: x86-64 Programming III

Compiling Loops (Review)

❖ Other loops compiled similarly

▪ Will show variations and complications in coming slides, but
may skip a few examples in the interest of time

❖ Most important to consider:

▪ When should conditionals be evaluated? (while vs. do-while)

▪ How much jumping is involved?

23

Assembly code:C/Java code:

CSE351, Autumn 2022L10: x86-64 Programming III

Compiling Loops (Review)

24

x86-64:C:

Do-while Loop:

While Loop:

C: x86-64:

While Loop (ver. 2):

C: x86-64:

CSE351, Autumn 2022L10: x86-64 Programming III

For-Loop →While-Loop

25

Init;

while (Test) {

Body

Update;

}

While-Loop Version:

Caveat: C and Java have
break and continue

• Conversion works fine for break

• Jump to same label as loop
exit condition

• But not continue: would skip
doing Update, which it should
do with for-loops

• Introduce new label at
Update

for (Init; Test; Update) {

Body

}

For-Loop:

CSE351, Autumn 2022L10: x86-64 Programming III

Practice Question 2

❖ The following is assembly code for a for-loop; identify
the corresponding parts (Init, Test, Update)
▪ → → →

______ ______ ______
26

CSE351, Autumn 2022L10: x86-64 Programming III

Summary

❖ Control flow in x86 determined by Condition Codes

▪ Showed Carry, Zero, Sign, and Overflow, though others exist

▪ Set flags with arithmetic instructions (implicit) or Compare
and Test (explicit)

▪ Set instructions read out flag values

▪ Jump instructions use flag values to determine next
instruction to execute

▪ Most control flow constructs (e.g., if-else, for-loop, while-
loop) can be implemented in assembly using combinations
of conditional and unconditional jumps

27

https://en.wikipedia.org/wiki/Status_register#Common_flags

