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Relevant Course Information

❖ hw5 due Wednesday, hw6 due Friday

❖ Don’t change your poll answers after-the-fact!

▪ Graded on completion; misrepresents your understanding

❖ Lab 1a due tonight at 11:59 pm

▪ Submit and 
• Make sure there are no lingering statements in your code!

▪ Make sure you submit something to Gradescope before the 
deadline and that the file names are correct

▪ Can use late days to submit up until Wed 11:59 pm

❖ Lab 1b due next Monday (10/17)

▪ Submit , , and 
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Lab 1b Aside: C Macros

❖ C macros basics:

▪ Basic syntax is of the form:  

▪ Allows you to use “ ” instead of “ ” in code
• Does naïve copy and replace before compilation – everywhere the 

characters “NAME” appear in the code, the characters “expression” 
will now appear instead

• NOT the same as a Java constant

▪ Useful to help with readability/factoring in code

❖ You’ll use C macros in Lab 1b for defining bit masks

▪ See Lab 1b starter code and Lecture 4 slides (card 
operations) for examples
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Reading Review

❖ Terminology:

▪ normalized scientific binary notation

▪ trailing zeros

▪ sign, mantissa, exponent ↔ bit fields S, M, and E

▪ , 

▪ biased notation (exponent), implicit leading one (mantissa)

▪ rounding errors

❖ Questions from the Reading?
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Review Questions

❖ Convert 11.37510 to normalized binary scientific 
notation

❖ What is the value encoded by the following floating 
point number?

0b  0 | 1000 0000 | 110 0000 0000 0000 0000 0000

▪ bias = 2w-1-1

▪ exponent = E – bias

▪ mantissa = 1.M
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2-1 = 0.5
2-2 = 0.25
2-3 = 0.125
2-4 = 0.0625
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Number Representation Revisited

❖ What can we represent in one word?

▪ Signed and Unsigned Integers

▪ Characters (ASCII)

▪ Addresses

❖ How do we encode the following:

▪ Real numbers (e.g., 3.14159)

▪ Very large numbers (e.g., 6.02×1023)

▪ Very small numbers (e.g., 6.626×10-34)

▪ Special numbers (e.g., ∞, NaN)
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Floating Point Topics

❖ IEEE floating-point standard

❖ Floating-point operations and rounding

❖ Floating-point in C

❖ There are many more details that we won’t cover

▪ It’s a 58-page standard…
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Binary Scientific Notation (Review)

❖ Normalized form:  exactly one digit (non-zero) to left 
of binary point

❖ Computer arithmetic that supports this called floating 
point due to the “floating” of the binary point

▪ Declare such variable in C as (or )
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1.012 × 2-1

radix (base)binary point

exponentmantissa
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IEEE Floating Point

❖ IEEE 754 (established in 1985)

▪ Standard to make numerically-sensitive programs portable

▪ Specifies two things: representation scheme and result of floating 
point operations

▪ Supported by all major CPUs

❖ Driven by numerical concerns

▪ Scientists/numerical analysts want them to be as real as possible

▪ Engineers want them to be easy to implement and fast

▪ Scientists mostly won out:
• Nice standards for rounding, overflow, underflow, but...

• Hard to make fast in hardware

• Float operations can be an order of magnitude slower than integer ops

9



CSE351, Autumn 2022L06:  Floating Point I

Floating Point Encoding (Review)

❖ Use normalized, base 2 scientific notation:

▪ Value: ±1 × Mantissa × 2Exponent

▪ Bit Fields: (-1)S × 1.M × 2(E–bias)

❖ Representation Scheme:

▪ Sign bit (0 is positive, 1 is negative)

▪ Mantissa (a.k.a. significand) is the fractional part of the 
number in normalized form and encoded in bit vector M

▪ Exponent weights the value by a (possibly negative) power 
of 2 and encoded in the bit vector E
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S E M
31 30 23 22 0

1 bit 8 bits 23 bits
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The Exponent Field (Review)

❖ Use biased notation

▪ Read exponent as unsigned, but with bias of 2w-1-1 = 127

▪ Representable exponents roughly ½ positive and ½ negative

▪ Exp = E – bias  ↔ E = Exp + bias
• Exponent 0 (Exp = 0) is represented as E = 0b 0111 1111

❖ Why biased?

▪ Now it’s a sign-and-magnitude representation!

▪ Makes floating point arithmetic easier (somewhat 
compatible with two’s complement hardware) 11
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The Mantissa (Fraction) Field (Review)

❖ Note the implicit leading 1 in front of the M bit vector

▪ Example:  0b 0011 1111 1100 0000 0000 0000 0000 0000 
is read as  1.12 = 1.510, not 0.12 = 0.510

▪ Gives us an extra bit of precision

❖ Mantissa “limits”

▪ Low values near M = 0b0…0 are close to 2Exp

▪ High values near M = 0b1…1 are close to 2Exp+1
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(-1)S x (1 . M) x 2(E–bias)

S E M
31 30 23 22 0

1 bit 8 bits 23 bits
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Normalized Floating Point Conversions

❖ FP → Decimal

1. Append the bits of M to 
implicit leading 1 to form 
the mantissa.

2. Multiply the mantissa by 
2E – bias.

3. Multiply the sign (-1)S.

4. Multiply out the 
exponent by shifting the 
binary point.

5. Convert from binary to 
decimal.
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❖ Decimal → FP

1. Convert decimal to 
binary.

2. Convert binary to 
normalized scientific 
notation.

3. Encode sign as S (0/1).

4. Add the bias to exponent 
and encode E as 
unsigned.

5. The first bits after the 
leading 1 that fit are 
encoded into M.
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Practice Question

❖ Convert the decimal number -7.375 = -1.11011 x 22

into floating point representation.
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Precision and Accuracy

❖ Accuracy is a measure of the difference between the 
actual value of a number and its computer 
representation

❖ Precision is a count of the number of bits in a 
computer word used to represent a value

▪ Capacity for accuracy

❖ High precision permits high accuracy but doesn’t 
guarantee it

▪ Example: will be represented using 
all 24 bits of the mantissa (highly precise), but is only an 
approximation (not accurate)
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Need Greater Precision?

❖ Double Precision (vs. Single Precision) in 64 bits

▪ C variable declared as 

▪ Exponent bias is now 210–1 = 1023

▪ Advantages: greater precision (larger mantissa), 
greater range (larger exponent)

▪ Disadvantages: more bits used,
slower to manipulate
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S E (11) M (20 of 52)
63 62 52 51 32

M (32 of 52)
31 0



CSE351, Autumn 2022L06:  Floating Point I

Current Limitations

❖ Largest magnitude we can represent?

❖ Smallest magnitude we can represent?

▪ Limited range due to width of E field

❖ What happens if we try to represent 20 + 2-30?

▪ Rounding due to limited precision: stores 20

❖ There is a need for special cases

▪ How do we represent the value zero?

▪ What about ∞ and NaN?
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Summary

❖ Floating point approximates real numbers:

▪ Handles large numbers, small numbers, special numbers

▪ Exponent in biased notation (bias = 2w-1 – 1)
• Size of exponent field determines our representable range

• Outside of representable exponents is overflow and underflow

▪ Mantissa approximates fractional portion of binary point
• Size of mantissa field determines our representable precision

• Implicit leading 1 (normalized) except in special cases

• Exceeding length causes rounding
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S E (8) M (23)
31 30 23 22 0
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Preview Question

❖ Find the sum of the following binary numbers in 
normalized scientific binary notation:

1.012×20 + 1.112×22
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