
CSE351, Autumn 2022L06: Floating Point I

Floating Point I
CSE 351 Autumn 2022

Instructor: Teaching Assistants:

Justin Hsia Angela Xu Arjun Narendra Armin Magness

Assaf Vayner Carrie Hu Clare Edmonds
David Dai Dominick Ta Effie Zheng
James Froelich Jenny Peng Kristina Lansang
Paul Stevans Renee Ruan Vincent Xiao

http://xkcd.com/899/

http://xkcd.com/899/

CSE351, Autumn 2022L06: Floating Point I

Relevant Course Information

❖ hw5 due Wednesday, hw6 due Friday

❖ Don’t change your poll answers after-the-fact!

▪ Graded on completion; misrepresents your understanding

❖ Lab 1a due tonight at 11:59 pm

▪ Submit and
• Make sure there are no lingering statements in your code!

▪ Make sure you submit something to Gradescope before the
deadline and that the file names are correct

▪ Can use late days to submit up until Wed 11:59 pm

❖ Lab 1b due next Monday (10/17)

▪ Submit , , and

2

CSE351, Autumn 2022L06: Floating Point I

Lab 1b Aside: C Macros

❖ C macros basics:

▪ Basic syntax is of the form:

▪ Allows you to use “ ” instead of “ ” in code
• Does naïve copy and replace before compilation – everywhere the

characters “NAME” appear in the code, the characters “expression”
will now appear instead

• NOT the same as a Java constant

▪ Useful to help with readability/factoring in code

❖ You’ll use C macros in Lab 1b for defining bit masks

▪ See Lab 1b starter code and Lecture 4 slides (card
operations) for examples

3

CSE351, Autumn 2022L06: Floating Point I

Reading Review

❖ Terminology:

▪ normalized scientific binary notation

▪ trailing zeros

▪ sign, mantissa, exponent ↔ bit fields S, M, and E

▪ ,

▪ biased notation (exponent), implicit leading one (mantissa)

▪ rounding errors

❖ Questions from the Reading?

4

CSE351, Autumn 2022L06: Floating Point I

Review Questions

❖ Convert 11.37510 to normalized binary scientific
notation

❖ What is the value encoded by the following floating
point number?

0b 0 | 1000 0000 | 110 0000 0000 0000 0000 0000

▪ bias = 2w-1-1

▪ exponent = E – bias

▪ mantissa = 1.M

5

2-1 = 0.5
2-2 = 0.25
2-3 = 0.125
2-4 = 0.0625

CSE351, Autumn 2022L06: Floating Point I

Number Representation Revisited

❖ What can we represent in one word?

▪ Signed and Unsigned Integers

▪ Characters (ASCII)

▪ Addresses

❖ How do we encode the following:

▪ Real numbers (e.g., 3.14159)

▪ Very large numbers (e.g., 6.02×1023)

▪ Very small numbers (e.g., 6.626×10-34)

▪ Special numbers (e.g., ∞, NaN)

6

Floating
Point

CSE351, Autumn 2022L06: Floating Point I

Floating Point Topics

❖ IEEE floating-point standard

❖ Floating-point operations and rounding

❖ Floating-point in C

❖ There are many more details that we won’t cover

▪ It’s a 58-page standard…
7

CSE351, Autumn 2022L06: Floating Point I

Binary Scientific Notation (Review)

❖ Normalized form: exactly one digit (non-zero) to left
of binary point

❖ Computer arithmetic that supports this called floating
point due to the “floating” of the binary point

▪ Declare such variable in C as (or)

8

1.012 × 2-1

radix (base)binary point

exponentmantissa

CSE351, Autumn 2022L06: Floating Point I

IEEE Floating Point

❖ IEEE 754 (established in 1985)

▪ Standard to make numerically-sensitive programs portable

▪ Specifies two things: representation scheme and result of floating
point operations

▪ Supported by all major CPUs

❖ Driven by numerical concerns

▪ Scientists/numerical analysts want them to be as real as possible

▪ Engineers want them to be easy to implement and fast

▪ Scientists mostly won out:
• Nice standards for rounding, overflow, underflow, but...

• Hard to make fast in hardware

• Float operations can be an order of magnitude slower than integer ops

9

CSE351, Autumn 2022L06: Floating Point I

Floating Point Encoding (Review)

❖ Use normalized, base 2 scientific notation:

▪ Value: ±1 × Mantissa × 2Exponent

▪ Bit Fields: (-1)S × 1.M × 2(E–bias)

❖ Representation Scheme:

▪ Sign bit (0 is positive, 1 is negative)

▪ Mantissa (a.k.a. significand) is the fractional part of the
number in normalized form and encoded in bit vector M

▪ Exponent weights the value by a (possibly negative) power
of 2 and encoded in the bit vector E

10

S E M
31 30 23 22 0

1 bit 8 bits 23 bits

CSE351, Autumn 2022L06: Floating Point I

The Exponent Field (Review)

❖ Use biased notation

▪ Read exponent as unsigned, but with bias of 2w-1-1 = 127

▪ Representable exponents roughly ½ positive and ½ negative

▪ Exp = E – bias ↔ E = Exp + bias
• Exponent 0 (Exp = 0) is represented as E = 0b 0111 1111

❖ Why biased?

▪ Now it’s a sign-and-magnitude representation!

▪ Makes floating point arithmetic easier (somewhat
compatible with two’s complement hardware) 11

CSE351, Autumn 2022L06: Floating Point I

The Mantissa (Fraction) Field (Review)

❖ Note the implicit leading 1 in front of the M bit vector

▪ Example: 0b 0011 1111 1100 0000 0000 0000 0000 0000
is read as 1.12 = 1.510, not 0.12 = 0.510

▪ Gives us an extra bit of precision

❖ Mantissa “limits”

▪ Low values near M = 0b0…0 are close to 2Exp

▪ High values near M = 0b1…1 are close to 2Exp+1

12

(-1)S x (1 . M) x 2(E–bias)

S E M
31 30 23 22 0

1 bit 8 bits 23 bits

CSE351, Autumn 2022L06: Floating Point I

Normalized Floating Point Conversions

❖ FP → Decimal

1. Append the bits of M to
implicit leading 1 to form
the mantissa.

2. Multiply the mantissa by
2E – bias.

3. Multiply the sign (-1)S.

4. Multiply out the
exponent by shifting the
binary point.

5. Convert from binary to
decimal.

13

❖ Decimal → FP

1. Convert decimal to
binary.

2. Convert binary to
normalized scientific
notation.

3. Encode sign as S (0/1).

4. Add the bias to exponent
and encode E as
unsigned.

5. The first bits after the
leading 1 that fit are
encoded into M.

CSE351, Autumn 2022L06: Floating Point I

Practice Question

❖ Convert the decimal number -7.375 = -1.11011 x 22

into floating point representation.

14

CSE351, Autumn 2022L06: Floating Point I

Precision and Accuracy

❖ Accuracy is a measure of the difference between the
actual value of a number and its computer
representation

❖ Precision is a count of the number of bits in a
computer word used to represent a value

▪ Capacity for accuracy

❖ High precision permits high accuracy but doesn’t
guarantee it

▪ Example: will be represented using
all 24 bits of the mantissa (highly precise), but is only an
approximation (not accurate)

15

CSE351, Autumn 2022L06: Floating Point I

Need Greater Precision?

❖ Double Precision (vs. Single Precision) in 64 bits

▪ C variable declared as

▪ Exponent bias is now 210–1 = 1023

▪ Advantages: greater precision (larger mantissa),
greater range (larger exponent)

▪ Disadvantages: more bits used,
slower to manipulate

16

S E (11) M (20 of 52)
63 62 52 51 32

M (32 of 52)
31 0

CSE351, Autumn 2022L06: Floating Point I

Current Limitations

❖ Largest magnitude we can represent?

❖ Smallest magnitude we can represent?

▪ Limited range due to width of E field

❖ What happens if we try to represent 20 + 2-30?

▪ Rounding due to limited precision: stores 20

❖ There is a need for special cases

▪ How do we represent the value zero?

▪ What about ∞ and NaN?

17

CSE351, Autumn 2022L06: Floating Point I

Summary

❖ Floating point approximates real numbers:

▪ Handles large numbers, small numbers, special numbers

▪ Exponent in biased notation (bias = 2w-1 – 1)
• Size of exponent field determines our representable range

• Outside of representable exponents is overflow and underflow

▪ Mantissa approximates fractional portion of binary point
• Size of mantissa field determines our representable precision

• Implicit leading 1 (normalized) except in special cases

• Exceeding length causes rounding

18

S E (8) M (23)
31 30 23 22 0

CSE351, Autumn 2022L06: Floating Point I

Preview Question

❖ Find the sum of the following binary numbers in
normalized scientific binary notation:

1.012×20 + 1.112×22

19

