Floating Point I

CSE 351 Autumn 2022

Instructor: Teaching Assistants:

Justin Hsia — Angela Xu — Arjun Narendra — Armin Magness

Assaf Vayner Carrie Hu Clare Edmonds

David Dai Dominick Ta Effie Zheng

James Froelich Jenny Peng Kristina Lansang

Paul Stevans Renee Ruan Vincent Xiao

Relevant Course Information

- hw5 due Wednesday, hw6 due Friday
- Don't change your poll answers after-the-fact!
 - Graded on completion; misrepresents your understanding
- Lab 1a due tonight at 11:59 pm
 - Submit pointer.c and lab1Asynthesis.txt
 - Make sure there are no lingering printf statements in your code!
 - Make sure you submit something to Gradescope before the deadline and that the file names are correct
 - Can use late days to submit up until Wed 11:59 pm
- Lab 1b due next Monday (10/17)
 - Submit aisle_manager.c, store_client.c, and lab1Bsynthesis.txt

Lab 1b Aside: C Macros

- C macros basics:
 - Basic syntax is of the form: #define NAME expression
 - Allows you to use "NAME" instead of "expression" in code
 - Does naïve copy and replace before compilation everywhere the characters "NAME" appear in the code, the characters "expression" will now appear instead
 - NOT the same as a Java constant
 - Useful to help with readability/factoring in code
- You'll use C macros in Lab 1b for defining bit masks
 - See Lab 1b starter code and Lecture 4 slides (card operations) for examples

Reading Review

- Terminology:
 - normalized scientific binary notation
 - trailing zeros
 - sign, mantissa, exponent ↔ bit fields S, M, and E
 - float, double
 - biased notation (exponent), implicit leading one (mantissa)
 - rounding errors
- Questions from the Reading?

Review Questions

$$2^{-1} = 0.5$$
 $2^{-2} = 0.25$
 $2^{-3} = 0.125$
 $2^{-4} = 0.0625$

- Convert 11.375₁₀ to normalized binary scientific notation
- What is the value encoded by the following floating point number?

- bias = $2^{w-1}-1$
- exponent = E bias
- mantissa = 1.M

Number Representation Revisited

- What can we represent in one word?
 - Signed and Unsigned Integers
 - Characters (ASCII)
 - Addresses
- How do we encode the following:
 - Real numbers (e.g., 3.14159)
 - Very large numbers (e.g., 6.02×10²³)
 - Very small numbers (e.g., 6.626×10⁻³⁴)
 - Special numbers (e.g., ∞, NaN)

Floating Point Topics

- IEEE floating-point standard
- Floating-point operations and rounding
- Floating-point in C

- There are many more details that we won't cover
 - It's a 58-page standard...

Binary Scientific Notation (Review)

- Normalized form: exactly one digit (non-zero) to left of binary point
- Computer arithmetic that supports this called floating point due to the "floating" of the binary point
 - Declare such variable in C as float (or double)

IEEE Floating Point

- IEEE 754 (established in 1985)
 - Standard to make numerically-sensitive programs portable
 - Specifies two things: representation scheme and result of floating point operations
 - Supported by all major CPUs
- Driven by numerical concerns
 - Scientists/numerical analysts want them to be as real as possible
 - Engineers want them to be easy to implement and fast
 - Scientists mostly won out:
 - Nice standards for rounding, overflow, underflow, but...
 - Hard to make fast in hardware
 - Float operations can be an order of magnitude slower than integer ops

Floating Point Encoding (Review)

- Use normalized, base 2 scientific notation:
 - Value: ±1 × Mantissa × 2^{Exponent}
 - Bit Fields: $(-1)^S \times 1.M \times 2^{(E-bias)}$
- Representation Scheme:
 - Sign bit (0 is positive, 1 is negative)
 - Mantissa (a.k.a. significand) is the fractional part of the number in normalized form and encoded in bit vector M
 - Exponent weights the value by a (possibly negative) power of 2 and encoded in the bit vector E

1 bit 8 bits

23 bits

The Exponent Field (Review)

- Use biased notation
 - Read exponent as unsigned, but with *bias* of 2^{w-1}-1 = 127
 - Representable exponents roughly ½ positive and ½ negative
 - $Exp = E bias \leftrightarrow E = Exp + bias$
 - Exponent 0 (Exp = 0) is represented as E = 0b 0111 1111

- Why biased?
 - Now it's a sign-and-magnitude representation!
 - Makes floating point arithmetic easier (somewhat compatible with two's complement hardware)

The Mantissa (Fraction) Field (Review)

$$(-1)^{s} \times (1.M) \times 2^{(E-bias)}$$

- Note the implicit léading 1 in front of the M bit vector

 - Gives us an extra bit of precision
- Mantissa "limits"
 - Low values near M = 0b0...0 are close to 2^{Exp}
 - High values near M = 0b1...1 are close to 2^{Exp+1}

Normalized Floating Point Conversions

- ❖ FP → Decimal
 - 1. Append the bits of M to implicit leading 1 to form the mantissa.
 - 2. Multiply the mantissa by 2^{E-bias} .
 - 3. Multiply the sign (-1)^S.
 - 4. Multiply out the exponent by shifting the binary point.
 - 5. Convert from binary to decimal.

- ◆ Decimal → FP
 - 1. Convert decimal to binary.
 - 2. Convert binary to normalized scientific notation.
 - 3. Encode sign as S(0/1).
 - 4. Add the bias to exponent and encode E as unsigned.
 - 5. The first bits after the leading 1 that fit are encoded into M.

Practice Question

❖ Convert the decimal number -7.375 = -1.11011 x 2² into floating point representation.

Precision and Accuracy

- Accuracy is a measure of the difference between the actual value of a number and its computer representation
- Precision is a count of the number of bits in a computer word used to represent a value
 - Capacity for accuracy
- High precision permits high accuracy but doesn't guarantee it
 - Example: float pi = 3.14; will be represented using all 24 bits of the mantissa (highly precise), but is only an approximation (not accurate)

Need Greater Precision?

Double Precision (vs. Single Precision) in 64 bits

- C variable declared as double
- Exponent bias is now $2^{10}-1 = 1023$
- Advantages: greater precision (larger mantissa), greater range (larger exponent)
- Disadvantages: more bits used, slower to manipulate

Current Limitations

- Largest magnitude we can represent?
- Smallest magnitude we can represent?
 - Limited range due to width of E field
- What happens if we try to represent $2^0 + 2^{-30}$?
 - Rounding due to limited precision: stores 2⁰
- There is a need for special cases
 - How do we represent the value zero?
 - What about ∞ and NaN?

Summary

Floating point approximates real numbers:

- Handles large numbers, small numbers, special numbers
- Exponent in biased notation (bias = $2^{w-1} 1$)
 - Size of exponent field determines our representable range
 - Outside of representable exponents is overflow and underflow
- Mantissa approximates fractional portion of binary point
 - Size of mantissa field determines our representable precision
 - Implicit leading 1 (normalized) except in special cases
 - Exceeding length causes rounding

Preview Question

Find the sum of the following binary numbers in normalized scientific binary notation:

$$1.01_2 \times 2^0 + 1.11_2 \times 2^2$$