Relevant Course Information

❖ hw4 due Monday, hw5 due Wednesday

❖ Lab 1a due Monday (10/10)
 ▪ Use ptest and dlc.py to check your solution for correctness (on the CSE Linux environment)
 ▪ Submit pointer.c and lab1Asynthesis.txt to Gradescope
 • Make sure you pass the File and Compilation Check – all the correct files were found and there were no compilation or runtime errors

❖ Lab 1b released today, due 10/17
 ▪ Bit manipulation on a custom encoding scheme
 ▪ Bonus slides at the end of today’s lecture have relevant examples
Runnable Code Snippets on Ed

- Ed allows you to embed runnable code snippets (e.g., readings, homework, discussion)
 - These are *editable* and *rerunnable*!
 - Hides compiler warnings, but will show compiler errors and runtime errors

- Suggested use
 - Good for experimental questions about basic behaviors in C
 - *NOT* entirely consistent with the CSE Linux environment, so should not be used for any lab-related work
Reading Review

❖ Terminology:
 ▪ UMin, UMax, TMin, Tmax
 ▪ Type casting: implicit vs. explicit
 ▪ Integer extension: zero extension vs. sign extension
 ▪ Modular arithmetic and arithmetic overflow
 ▪ Bit shifting: left shift, logical right shift, arithmetic right shift

❖ Questions from the Reading?
Review Questions

❖ What is the value (and encoding) of T_{Min} for a fictional 6-bit wide integer data type?

$$2^{-5} = -32$$

❖ For unsigned char $\text{uc} = 0xA1$, what are the produced data for the cast (unsigned short)uc?

unsigned \rightarrow zero extension

$0x0D0A1$

❖ What is the result of the following expressions?

- $(\text{signed char})\text{uc} >> 2$
- $(\text{unsigned char})\text{uc} >> 3$

signed:

$$0b\ 1010\ 0001\ \text{arithmetic} \rightarrow \ 0b\ 1110\ 1000 = 0xE8$$

unsigned:

$$0b\ 1010\ 0001\ \text{logical} \rightarrow \ 0b\ 0001\ 0100 = 0x14$$
Integers

❖ Binary representation of integers
 ▪ Unsigned and signed
 ▪ Casting in C

❖ Consequences of finite width representations
 ▪ Sign extension, overflow

❖ Shifting and arithmetic operations
Signed/Unsigned Conversion Visualized

- Two’s Complement → Unsigned
 - Ordering Inversion
 - Negative → Big Positive

\[2^{w-1} - 1 = 0b01...1 \]

\[-2^{w-1} = 0b10...0 = T_{\text{Min}} \]

\[U_{\text{Max}} = 0b1...1 = 2^w - 1 \]

\[T_{\text{Max}} + 1 \]

\[0/\text{U}_{\text{Min}} \]
Values To Remember (Review)

- **Unsigned Values**
 - $\text{UMin} = 0b00...0 = 0$
 - $\text{UMax} = 0b11...1 = 2^w - 1$

- **Two’s Complement Values**
 - $\text{TMin} = 0b10...0 = -2^{w-1}$
 - $\text{TMax} = 0b01...1 = 2^{w-1} - 1$
 - $-1 = 0b11...1$

- **Example:** Values for $w = 64$

<table>
<thead>
<tr>
<th></th>
<th>Decimal</th>
<th>Hex</th>
</tr>
</thead>
<tbody>
<tr>
<td>UMax</td>
<td>18,446,744,073,709,551,615</td>
<td>FF FF FF FF FF FF FF FF FF</td>
</tr>
<tr>
<td>TMax</td>
<td>9,223,372,036,854,775,807</td>
<td>7F FF FF FF FF FF FF FF FF</td>
</tr>
<tr>
<td>Tmin</td>
<td>-9,223,372,036,854,775,808</td>
<td>80 00 00 00 00 00 00 00</td>
</tr>
<tr>
<td>-1</td>
<td>-1</td>
<td>FF FF FF FF FF FF FF FF FF</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>00 00 00 00 00 00 00 00 00</td>
</tr>
</tbody>
</table>
In C: Signed vs. Unsigned (Review)

- Casting
 - Bits are unchanged, just interpreted differently!
 - int tx, ty;
 - unsigned int ux, uy;
 - Explicit casting
 - tx = (int) ux;
 - uy = (unsigned int) ty;
 - Implicit casting can occur during assignments or function calls
 - cast to target variable/parameter type
 - tx = ux;
 - uy = ty;
 - (also implicitly occurs with printf format specifiers)
Casting Surprises (Review)

- Integer literals (constants)
 - By default, integer constants are considered *signed* integers
 - Hex constants already have an explicit binary representation
 - Use “U” (or “u”) suffix to explicitly force *unsigned*
 - Examples: `0U, 4294967259u`

- Expression Evaluation
 - When you mixed unsigned and signed in a single expression, then *signed values are implicitly cast to unsigned*
 - Including comparison operators `<, >, ==, <=, >=`
Expression Evaluation Examples

- Assuming 8-bit data (i.e., bit position 7 is the MSB), what will the following expression evaluate to?

 - \(127 < 128u \)
 - Signed: \(0b1111111 \)
 - Unsigned: \(0b10000000 \)
 - Unsigned comparison: \(0b10000000 + 127 \) < \(0b10000000 + 128 \)
 - True

 - \(127 < (\text{signed char}) \ 128u \)
 - Signed: \(0b1111111 \)
 - Unsigned: \(0b10000000 \)
 - Signed comparison: \(0b10000000 - 128 \) < \(0b10000000 - 127 \)
 - False
Integers

- Binary representation of integers
 - Unsigned and signed
 - Casting in C
- Consequences of finite width representations
 - Sign extension, overflow
- Shifting and arithmetic operations
Sign Extension (Review)

❖ **Task:** Given a w-bit signed integer X, convert it to $w+k$-bit signed integer X' *with the same value*

❖ **Rule:** Add k copies of sign bit

- Let x_i be the i-th digit of X in binary
- $X' = x_{w-1}, \ldots, x_{w-1}, x_{w-1}, x_{w-2}, \ldots, x_1, x_0$

![Diagram showing sign extension](image)

k copies of MSB

original X
Two’s Complement Arithmetic

❖ The same addition procedure works for both unsigned and two’s complement integers

▪ **Simplifies hardware:** only one algorithm for addition

▪ **Algorithm:** simple addition, **discard the highest carry bit**
 - Called modular addition: result is sum \(\text{modulo } 2^w \)
Arithmetic Overflow (Review)

- When a calculation produces a result that can’t be represented in the current encoding scheme
 - Integer range limited by fixed width
 - Can occur in both the positive and negative directions

- C and Java ignore overflow exceptions
 - You end up with a bad value in your program and no warning/indication... oops!

<table>
<thead>
<tr>
<th>Bits</th>
<th>Unsigned</th>
<th>Signed</th>
</tr>
</thead>
<tbody>
<tr>
<td>0000</td>
<td>0 \text{%UMin}</td>
<td>0</td>
</tr>
<tr>
<td>0001</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>0010</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>0011</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>0100</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>0101</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>0110</td>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>0111</td>
<td>7</td>
<td>7 \text{%TMax}</td>
</tr>
<tr>
<td>1000</td>
<td>8</td>
<td>-8</td>
</tr>
<tr>
<td>1001</td>
<td>9</td>
<td>-7</td>
</tr>
<tr>
<td>1010</td>
<td>10</td>
<td>-6</td>
</tr>
<tr>
<td>1011</td>
<td>11</td>
<td>-5</td>
</tr>
<tr>
<td>1100</td>
<td>12</td>
<td>-4</td>
</tr>
<tr>
<td>1101</td>
<td>13</td>
<td>-3</td>
</tr>
<tr>
<td>1110</td>
<td>14</td>
<td>-2</td>
</tr>
<tr>
<td>1111</td>
<td>15 \text{%UMax}</td>
<td>-1</td>
</tr>
</tbody>
</table>
Overflow: Unsigned

- **Addition:** drop carry bit \((-2^N)\)

 \[
 \begin{array}{c}
 15 \\
 + \ 2 \\
 \hline
 17 \\
 \end{array}
 \quad
 \begin{array}{c}
 1111 \\
 + \ 0010 \\
 \hline
 \text{Overflow} \quad 10001 \\
 \end{array}
 \]

- **Subtraction:** borrow \((+2^N)\)

 \[
 \begin{array}{c}
 1 \\
 - \ 2 \\
 \hline
 -1 \\
 \end{array}
 \quad
 \begin{array}{c}
 10001 \\
 - \ 0010 \\
 \hline
 1111 \\
 \end{array}
 \]

\(\pm 2^N\) because of modular arithmetic
Overflow: Two’s Complement

❖ **Addition:**
\[(+) + (+) = (−) \text{ result?} \]

\[
\begin{array}{c}
6 \\
+ 3 \\
\hline
9 \\
\hline
-7
\end{array}
\]

❖ **Subtraction:**
\[(−) + (−) = (+) ? \]

\[
\begin{array}{c}
-7 \\
- 3 \\
\hline
-10 \\
\hline
6
\end{array}
\]

For signed: overflow if operands have same sign and result’s sign is different
Practice Questions

❖ Assuming 8-bit integers:

▪ 0x27 = 39 (signed) = 39 (unsigned)
▪ 0xD9 = -39 (signed) = 217 (unsigned)
▪ 0x7F = 127 (signed) = 127 (unsigned)
▪ 0x81 = -127 (signed) = 129 (unsigned)

❖ For the following additions, did signed and/or unsigned overflow occur?

▪ 0x27 + 0x81

 signed: \(39 + (-127) = -88 \)
 unsigned: \(39 + 129 = 168 \)
 no signed overflow
 no unsigned overflow

▪ 0x7F + 0xD9

 signed: \(127 + (-39) = 88 \)
 unsigned: \(127 + 217 = 344 \)
 no signed overflow
 unsigned overflow

\[[T\text{Min}, T\text{Max}] = [-128, 127] \]
\[[U\text{Min}, U\text{Max}] = [0, 255] \]
Integers

- Binary representation of integers
 - Unsigned and signed
 - Casting in C
- Consequences of finite width representations
 - Sign extension, overflow
- **Shifting and arithmetic operations**
Shift Operations (Review)

- Throw away (drop) extra bits that “fall off” the end
- Left shift (\(x \ll n\)) bit vector \(x\) by \(n\) positions
 - Fill with 0’s on right
- Right shift (\(x \gg n\)) bit-vector \(x\) by \(n\) positions
 - Logical shift (for unsigned values)
 - Fill with 0’s on left
 - Arithmetic shift (for signed values)
 - Replicate most significant bit on left (maintains sign of \(x\))

8-bit example:

<table>
<thead>
<tr>
<th></th>
<th>(x)</th>
<th>0010 0010</th>
</tr>
</thead>
<tbody>
<tr>
<td>(x \ll 3)</td>
<td>0010 0000</td>
<td></td>
</tr>
<tr>
<td>logical: (x \gg 2)</td>
<td>0000 1000</td>
<td></td>
</tr>
<tr>
<td>arithmetic: (x \gg 2)</td>
<td>0000 1000</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>(x)</th>
<th>1010 0010</th>
</tr>
</thead>
<tbody>
<tr>
<td>(x \ll 3)</td>
<td>0001 0000</td>
<td></td>
</tr>
<tr>
<td>logical: (x \gg 2)</td>
<td>0010 1000</td>
<td></td>
</tr>
<tr>
<td>arithmetic: (x \gg 2)</td>
<td>1110 1000</td>
<td></td>
</tr>
</tbody>
</table>
Shift Operations (Review)

❖ Arithmetic:

- Left shift ($x << n$) is equivalent to multiply by 2^n
- Right shift ($x >> n$) is equivalent to divide by 2^n
- Shifting is faster than general multiply and divide operations! (compiler will try to optimize for you)

❖ Notes:

- Shifts by $n < 0$ or $n \geq w$ (w is bit width of x) are undefined
- In C: behavior of $>>$ is determined by the compiler
 - In gcc / C lang, depends on data type of x (signed/unsigned)
- In Java: logical shift is $>>>$ and arithmetic shift is $>>$
Left Shifting Arithmetic 8-bit Example

- No difference in left shift operation for unsigned and signed numbers (just manipulates bits)
 - Difference comes during interpretation: \(x \times 2^n \)?

\[
\begin{align*}
x &= 25; & \quad 00011001 &= 25 & \quad 25 \\
L_1 &= x \ll 2; & \quad 0001100100 &= 100 & \quad 100 \\
L_2 &= x \ll 3; & \quad \text{signed overflow} & \quad -56 & \quad 200 \\
L_3 &= x \ll 4; & \quad \text{unsigned overflow} & \quad -112 & \quad 144
\end{align*}
\]
Right Shifting Arithmetic 8-bit Examples

- **Reminder:** C operator `>>` does *logical* shift on unsigned values and *arithmetic* shift on signed values
 - **Logical Shift:** $x / 2^n$

$$
\begin{align*}
x_u &= 240u; \quad 11110000 \quad = \quad 240 \\
R1_u &= x_u >> 3; \quad 00011110000 \quad = \quad 30 \\
R2_u &= x_u >> 5; \quad 0000011110000 \quad = \quad 7
\end{align*}
$$

rounding (down)
Right Shifting Arithmetic 8-bit Examples

- **Reminder:** C operator `>>` does *logical* shift on unsigned values and *arithmetic* shift on signed values
 - Arithmetic Shift: $x \div 2^n$?

\[
x_s = -16; \quad 11110000 \quad = \quad -16
\]

\[
R_{1s} = xu >> 3; \quad 111111100000 \quad = \quad -2
\]

\[
R_{2s} = xu >> 5; \quad 11111111100000 \quad = \quad -1
\]

rounding (down)
Exploration Questions

For the following expressions, find a value of `signed char x`, if there exists one, that makes the expression True.

- **Assume we are using 8-bit arithmetic:**
 - \(x == (\text{unsigned char}) x \)
 - \(x >= 128U \)
 - \(x != (x>>2) << 2 \)
 - \(x == -x \)
 - Hint: there are two solutions
 - \((x < 128U) && (x > 0x3F) \)
Summary

❖ Sign and unsigned variables in C
 ▪ Bit pattern remains the same, just *interpreted* differently
 ▪ Strange things can happen with our arithmetic when we convert/cast between sign and unsigned numbers
 • Type of variables affects behavior of operators (shifting, comparison)

❖ We can only represent so many numbers in \(w \) bits
 ▪ When we exceed the limits, *arithmetic overflow* occurs
 ▪ *Sign extension* tries to preserve value when expanding

❖ Shifting is a useful bitwise operator
 ▪ Right shifting can be arithmetic (sign) or logical (0)
 ▪ Can be used in multiplication with constant or bit masking
Some examples of using shift operators in combination with bitmasks, which you may find helpful for Lab 1b.

- Extract the 2nd most significant byte of an \texttt{int}
- Extract the sign bit of a signed \texttt{int}
- Conditionals as Boolean expressions
Using Shifts and Masks

- **Extract the 2nd most significant byte of an int:**
 - First shift, then mask: $(x >> 16) \& \ 0xFF$
 - Or first mask, then shift: $(x \& \ 0xFF0000) >> 16$

<table>
<thead>
<tr>
<th>x</th>
<th>00000001 00000010 00000011 00000100</th>
</tr>
</thead>
<tbody>
<tr>
<td>$x >> 16$</td>
<td>00000000 00000000 00000001 00000010</td>
</tr>
<tr>
<td>$0xFF$</td>
<td>00000000 00000000 00000000 11111111</td>
</tr>
<tr>
<td>$(x >> 16) & 0xFF$</td>
<td>00000000 00000000 00000000 00000010</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>x</th>
<th>00000001 00000010 00000011 00000100</th>
</tr>
</thead>
<tbody>
<tr>
<td>$0xFF0000$</td>
<td>00000000 11111111 00000000 00000000</td>
</tr>
<tr>
<td>$x & 0xFF0000$</td>
<td>00000000 00000010 00000000 00000000</td>
</tr>
<tr>
<td>$(x & 0xFF0000) >> 16$</td>
<td>00000000 00000000 00000000 00000010</td>
</tr>
</tbody>
</table>
Using Shifts and Masks

- Extract the *sign bit* of a signed `int`:
 - First shift, then mask: `(x>>31) & 0x1`
 - Assuming arithmetic shift here, but this works in either case
 - Need mask to clear 1s possibly shifted in

<table>
<thead>
<tr>
<th>x</th>
<th>00000001 00000010 00000011 00000100</th>
</tr>
</thead>
<tbody>
<tr>
<td>x>>31</td>
<td>00000000 00000000 00000000 00000000</td>
</tr>
<tr>
<td>0x1</td>
<td>00000000 00000000 00000000 00000000</td>
</tr>
<tr>
<td>(x>>31) & 0x1</td>
<td>00000000 00000000 00000000 00000000</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>x</th>
<th>10000001 00000010 00000011 00000100</th>
</tr>
</thead>
<tbody>
<tr>
<td>x>>31</td>
<td>11111111 11111111 11111111 11111111</td>
</tr>
<tr>
<td>0x1</td>
<td>00000000 00000000 00000000 00000000</td>
</tr>
<tr>
<td>(x>>31) & 0x1</td>
<td>00000000 00000000 00000000 00000000</td>
</tr>
</tbody>
</table>
Using Shifts and Masks

❖ Conditionals as Boolean expressions

▪ For int x, what does \((x<<31)>>31\) do?

x=!!123	00000000 00000000 00000000 00000001
x<<31	10000000 00000000 00000000 00000000
(x<<31)>>31	11111111 11111111 11111111 11111111
!x	00000000 00000000 00000000 00000000
!x<<31	00000000 00000000 00000000 00000000
(!x<<31)>>31	00000000 00000000 00000000 00000000

▪ Can use in place of conditional:

 • In C: if(x) \{a=y;\} else \{a=z;\} equivalent to \(a=x?y:z;\)
 • \(a=((!!x<<31)>>31)\&y) | (((!x<<31)>>31)\&z);\)