Integers II

CSE 351 Autumn 2022

Relevant Course Information

* hw4 due Monday, hw5 due Wednesday
* Lab 1a due Monday (10/10)
- Use ptest and dlc.py to check your solution for correctness (on the CSE Linux environment)
- Submit pointer.c and lab1Asynthesis.txt to Gradescope
- Make sure you pass the File and Compilation Check - all the correct files were found and there were no compilation or runtime errors
* Lab 1b released today, due 10/17
- Bit manipulation on a custom encoding scheme
- Bonus slides at the end of today's lecture have relevant examples

Runnable Code Snippets on Ed

* Ed allows you to embed runnable code snippets (e.g., readings, homework, discussion)
- These are editable and rerunnable!
- Hides compiler warnings, but will show compiler errors and runtime errors
* Suggested use
- Good for experimental questions about basic behaviors in C
- NOT entirely consistent with the CSE Linux environment, so should not be used for any lab-related work

Reading Review

* Terminology:
- UMin, UMax, TMin, TMax
- Type casting: implicit vs. explicit
- Integer extension: zero extension vs. sign extension
- Modular arithmetic and arithmetic overflow
- Bit shifting: left shift, logical right shift, arithmetic right shift
* Questions from the Reading?

Review Questions

* What is the value (and encoding) of TMin for a fictional 6-bit wide integer data type?
* For unsigned char uc $=0 x A 1 ;$ what are the produced data for the cast (unsigned short)uc?
*What is the result of the following expressions?
- (signed char)uc >> 2
- (unsigned char)uc >> 3

Integers

* Binary representation of integers
- Unsigned and signed
- Casting in C
* Consequences of finite width representations
- Sign extension, overflow
* Shifting and arithmetic operations

Signed/Unsigned Conversion Visualized

* Two's Complement \rightarrow Unsigned
- Ordering Inversion
- Negative \rightarrow Big Positive

Values To Remember (Review)

* Unsigned Values

```
- UMin = 0b00...0
    \(=0\)
- UMax = 0b11...1
\[
=\quad 2^{w}-1
\]
```

* Two's Complement Values
- TMin = 0b10...0
$=-2^{w-1}$
- TMax = 0b01...1
$=2^{w-1}-1$
- $-1=0.11 \ldots 1$
* Example: Values for $w=64$

In C: Signed vs. Unsigned (Review)

* Casting
- Bits are unchanged, just interpreted differently!
- int tx, ty;
- unsigned int ux, uy;
- Explicit casting
- tx = (int) ux;
- uy = (unsigned int) ty;
- Implicit casting can occur during assignments or function calls
- tx = ux;
- uy = ty;

Casting Surprises (Review)

* Integer literals (constants)
- By default, integer constants are considered signed integers
- Hex constants already have an explicit binary representation
- Use "U" (or "u") suffix to explicitly force unsigned
- Examples: OU, 4294967259u
* Expression Evaluation
- When you mixed unsigned and signed in a single expression, then signed values are implicitly cast to unsigned
- Including comparison operators $<,>,==,<=,>=$

Expression Evaluation Examples

* Assuming 8-bit data (i.e., bit position 7 is the MSB), what will the following expression evaluate to?
- 127 < 128 u
" 127 < (signed char) 128u

Integers

* Binary representation of integers
- Unsigned and signed
- Casting in C
* Consequences of finite width representations
- Sign extension, overflow
* Shifting and arithmetic operations

Sign Extension (Review)

* Task: Given a w-bit signed integer X , convert it to $w^{+} k$-bit signed integer X^{\prime} with the same value
* Rule: Add k copies of sign bit
- Let x_{i} be the i-th digit of X in binary
- $\mathrm{X}^{\prime}=\underbrace{x_{w-1}, \ldots, x_{w-1}}_{k \text { copies of MSB }}, \underbrace{x_{w-1}, x_{w-2}, \ldots, x_{1}, x_{0}}_{\text {original } \mathrm{X}}$

Two's Complement Arithmetic

* The same addition procedure works for both unsigned and two's complement integers
- Simplifies hardware: only one algorithm for addition
- Algorithm: simple addition, discard the highest carry bit
- Called modular addition: result is sum modulo 2^{w}

Arithmetic Overflow (Review)

Bits	Unsigned	Signed
0000	0	0
0001	1	1
0010	2	2
0011	3	3
0100	4	4
0101	5	5
0110	6	6
0111	7	7
1000	8	-8
1001	9	-7
1010	10	-6
1011	11	-5
1100	12	-4
1101	13	-3
1110	14	-2
1111	15	-1

* When a calculation produces a result that can't be represented in the current encoding scheme
- Integer range limited by fixed width
- Can occur in both the positive and negative directions
* C and Java ignore overflow exceptions
- You end up with a bad value in your program and no warning/indication... oops!

Overflow: Unsigned

* Addition: drop carry bit $\left(-2^{\mathrm{N}}\right)$

* Subtraction: borrow $\left(+2^{\mathrm{N}}\right)$

$$
\begin{array}{rc}
1 \\
-\quad 2 \\
\frac{-10001}{-1} & -0010 \\
15
\end{array} \quad \begin{gathered}
1111 \\
\begin{array}{c}
\pm 2^{N} \text { because of } \\
\text { modular arithmetic }
\end{array}
\end{gathered}
$$

Overflow: Two’s Complement

* Addition: $(+)+(+)=(-)$ result ?

6
$+\quad 3$
8
-7
---:
1001

* Subtraction: $(-)+(-)=(+)$?

$$
\begin{array}{r}
-7 \\
-\quad 3 \\
\hline-10
\end{array} \quad \begin{array}{r}
1001 \\
-\quad 0011 \\
\hline 0110
\end{array}
$$

For signed: overflow if operands have same sign and result's sign is different

Practice Questions

* Assuming 8-bit integers:
- $0 \times 27=39$ (signed) $=39$ (unsigned)
- $0 \times$ D9 $=-39$ (signed) $=217$ (unsigned)
- $0 \times 7 \mathrm{~F}=127$ (signed) $=127$ (unsigned)
- $0 \times 81=-127$ (signed) $=129$ (unsigned)
* For the following additions, did signed and/or unsigned overflow occur?
- 0x27 + 0x81
- 0x7F + 0xD9

Integers

* Binary representation of integers
- Unsigned and signed
- Casting in C
* Consequences of finite width representations
- Sign extension, overflow
* Shifting and arithmetic operations

Shift Operations (Review)

* Throw away (drop) extra bits that "fall off" the end * Left shift ($\mathrm{x} \ll \mathrm{n}$) bit vector x by n positions
- Fill with 0's on right
* Right shift ($\mathrm{x} \gg \mathrm{n}$) bit-vector x by n positions
- Logical shift (for unsigned values)
- Fill with 0's on left
- Arithmetic shift (for signed values)
- Replicate most significant bit on left (maintains sign of x)

	x	0010	0010
logical:	$x \ll 3$	0001	0000
arithmetic:	$x \gg 2$	0000	1000
	$x \gg 2$	0000	1000

	x	1010	0010
logical:	$x \ll 3$	0001	0000
arithmetic:	$x \gg 2$	0010	1000
	$x \gg 2$	1110	1000

Shift Operations (Review)

* Arithmetic:
- Left shift ($x \ll n$) is equivalent to multiply by 2^{n}
- Right shift ($x \gg n$) is equivalent to divide by 2^{n}
- Shifting is faster than general multiply and divide operations!
* Notes:
- Shifts by $\mathrm{n}<0$ or $\mathrm{n} \geq \mathrm{w}$ (w is bit width of x) are undefined
- In C: behavior of >> is determined by the compiler
- In gcc / C lang, depends on data type of x (signed/unsigned)
- In Java: logical shift is >>> and arithmetic shift is >>

Left Shifting Arithmetic 8-bit Example

* No difference in left shift operation for unsigned and signed numbers (just manipulates bits)
- Difference comes during interpretation: $\quad x * 2^{\text {n }}$?

Right Shifting Arithmetic 8-bit Examples

* Reminder: C operator >> does logical shift on unsigned values and arithmetic shift on signed values - Logical Shift: x/2 ${ }^{\text {n }}$

Right Shifting Arithmetic 8-bit Examples

* Reminder: C operator >> does logical shift on unsigned values and arithmetic shift on signed values - Arithmetic Shift: $x / 2^{\text {n }}$?

$$
\begin{array}{lll}
\mathrm{xS}=-16 ; & 11110000 & =-16 \\
\mathrm{R} 1 \mathrm{~s}=\mathrm{xu} \gg 3 ; & 11111110000= & -2 \\
\mathrm{R} 2 \mathrm{~S}=\mathrm{xu} \gg 5 ; & 1111111110000= & -1
\end{array}
$$

Exploration Questions

For the following expressions, find a value of signed char x, if there exists one, that makes the expression True.

* Assume we are using 8-bit arithmetic:
- $x==$ (unsigned char) x

Example: All solutions:

- $\mathrm{x}>=128 \mathrm{U}$
- $x \quad!=(x \gg 2) \ll 2$
- $\mathrm{X}==-\mathrm{X}$
- Hint: there are two solutions
- $(x<128 U) \& \&(x>0 x 3 F)$

Summary

* Sign and unsigned variables in C
- Bit pattern remains the same, just interpreted differently
- Strange things can happen with our arithmetic when we convert/cast between sign and unsigned numbers
- Type of variables affects behavior of operators (shifting, comparison)
* We can only represent so many numbers in w bits
- When we exceed the limits, arithmetic overflow occurs
- Sign extension tries to preserve value when expanding
* Shifting is a useful bitwise operator
- Right shifting can be arithmetic (sign) or logical (0)
- Can be used in multiplication with constant or bit masking

Some examples of using shift operators in combination with bitmasks, which you may find helpful for Lab 1 b.

* Extract the $2^{\text {nd }}$ most significant byte of an int
* Extract the sign bit of a signed int
* Conditionals as Boolean expressions

Using Shifts and Masks

* Extract the $2^{\text {nd }}$ most significant byte of an int:
- First shift, then mask: ($x \gg 16$) \& $0 x F F$

| \mathbf{x} | 0000000100000010 | 0000001100000100 |
| :---: | :---: | :---: | :---: |
| $\mathbf{x \gg 1 6}$ | 000000000000000000000001 个 00000010 | |
| $0 \times F F$ | 00000000000000000000000011111111 | |
| $(\mathbf{x \gg 1 6) \& ~ 0 x F F}$ | 00000000000000000000000000000010 | |

- Or first mask, then shift: (x \& 0xFF0000) >>16

\mathbf{x}	00000001	00000010	00000011	00000100
0xFF0000	00000000	11111111	00000000	00000000
x \& 0xFF0000	00000000	00000010	00000000	0000000
(x\&0xFF0000) >>16	00000000	00000000	0000000	0000010

Using Shifts and Masks

* Extract the sign bit of a signed int:
- First shift, then mask: ($x \gg 31$) \& $0 x 1$
- Assuming arithmetic shift here, but this works in either case
- Need mask to clear 1s possibly shifted in

\mathbf{x}	00000001000000100000001100000100
$\mathbf{x \gg 3 1}$	00000000000000000000000000000000
0×1	00000000000000000000000000000001
$(x \gg 31) \& 0 \times 1$	00000000000000000000000000000000

| \mathbf{x} | 10000001000000100000001100000100 |
| :---: | :---: | :---: | :---: |
| $\mathbf{x \gg 3 1}$ | $11111111 \quad 1111111111111111 \quad 11111111$ |
| 0×1 | 00000000000000000000000000000001 |
| $\mathbf{(x \gg 3 1) \& 0 x 1}$ | 00000000000000000000000000000001 |

Using Shifts and Masks

* Conditionals as Boolean expressions
- For int x, what does $(x \ll 31) \gg 31$ do?

$\mathbf{x}=!!123$	00000000000000000000000000000001
$\mathbf{x} \ll 31$	10000000000000000000000000000000
$(x \ll 31) \gg 31$	11111111111111111111111111111111
$!x$	00000000000000000000000000000000
$!x \ll 31$	00000000000000000000000000000000
$(!x \ll 31) \gg 31$	00000000000000000000000000000000

- Can use in place of conditional:
- In C: if (x) $\{a=y ;\}$ else $\{a=z ;\}$ equivalent to $a=x ? y: z$;
- $a=(((!!x \ll 31) \gg 31) \& y) \quad(((!x \ll 31) \gg 31) \& z)$;

