
CSE351, Autumn 2022L02: Memory & Data I

Memory, Data, & Addressing I
CSE 351 Autumn 2022

Instructor:
Justin Hsia

Teaching Assistants:
Angela Xu
Arjun Narendra
Armin Magness
Assaf Vayner
Carrie Hu
Clare Edmonds
David Dai
Dominick Ta
Effie Zheng
James Froelich
Jenny Peng
Kristina Lansang
Paul Stevans
Renee Ruan
Vincent Xiao

http://xkcd.com/953/

http://xkcd.com/676/

CSE351, Autumn 2022L02: Memory & Data I

Relevant Course Information

❖ Everything not a reading or lecture lesson due @
11:59 pm

▪ Pre-Course Survey and HW0 due tonight

▪ HW1 due Monday (10/3)

▪ Lab 0 due Monday (10/3)
• This lab is exploratory and looks like a HW; the other labs will look a

lot different

❖ Ed Discussion etiquette

▪ For anything that doesn’t involve sensitive information or a
solution, post publicly (you can post anonymously!)

▪ If you feel like you question has been sufficiently answered,
make sure that a response has a checkmark

2

CSE351, Autumn 2022L02: Memory & Data I

EPA

❖ Encourage class-wide learning!

❖ Effort

▪ Attending office hours, completing all assignments

▪ Keeping up with Ed Discussion activity

❖ Participation

▪ Making the class more interactive by asking questions in
lecture, section, office hours, and on Ed Discussion

▪ Lecture question voting

❖ Altruism

▪ Helping others in section, office hours, and on Ed Discussion

3

CSE351, Autumn 2022L02: Memory & Data I

❖ Topic Group 1: Data

▪ Memory, Data, Integers, Floating Point,
Arrays, Structs

❖ Topic Group 2: Programs

▪ x86-64 Assembly, Procedures, Stacks,
Executables

❖ Topic Group 3: Scale & Coherence

▪ Caches, Processes, Virtual Memory,
Memory Allocation

Programming Languages
& Libraries

Operating System

Hardware

Physics

Transistors, Gates, Digital Systems

Even more applications

Applications

The Hardware/Software Interface

4

⋮

CSE351, Autumn 2022L02: Memory & Data I

❖ Topic Group 1: Data

▪ Memory, Data, Integers, Floating Point,
Arrays, Structs

❖ How do we store information for other parts of the
house of computing to access?

▪ How do we represent data and what limitations exist?

▪ What design decisions and priorities went into these
encodings?

Programming Languages
& Libraries

Operating System

Hardware

Physics

Transistors, Gates, Digital Systems

Even more applications

Applications

The Hardware/Software Interface

5

⋮

CSE351, Autumn 2022L02: Memory & Data I

Hardware: Physical View

6

CPU
(empty slot)

USB…

I/O
controller

Storage connections

Memory

CSE351, Autumn 2022L02: Memory & Data I

Hardware: Logical View

7

CPU Memory

Disks Net USB Etc.

Bus

CSE351, Autumn 2022L02: Memory & Data I

Hardware: 351 View (version 0)

❖ The CPU executes instructions

❖ Memory stores data

❖ Binary encoding!

▪ Instructions are just data
8

Memory

CPU

?

Q1: How are data and
instructions represented?

CSE351, Autumn 2022L02: Memory & Data I

Aside: Why Base 2?

❖ Electronic implementation

▪ Easy to store with bi-stable elements

▪ Reliably transmitted on noisy and inaccurate wires

❖ Other bases possible, but not yet viable:

▪ DNA data storage (base 4: A, C, G, T) is hot @UW

▪ Quantum computing

9

0.0V

0.5V

2.8V

3.3V

0 1 0

CSE351, Autumn 2022L02: Memory & Data I

Hardware: 351 View (version 0)

❖ To execute an instruction, the CPU must:

1) Fetch the instruction

2) (if applicable) Fetch data needed by the instruction

3) Perform the specified computation

4) (if applicable) Write the result back to memory
10

Memory

CPU

?
data

instructions

CSE351, Autumn 2022L02: Memory & Data I

This is extra
(non-testable)

material
Hardware: 351 View (version 1)

11

Memory

CPU

take 469

registers

i-cache

data

instructions

❖ More CPU details:

▪ Instructions are held temporarily in the instruction cache

▪ Other data are held temporarily in registers

❖ Instruction fetching is hardware-controlled

❖ Data movement is programmer-controlled (assembly)

CSE351, Autumn 2022L02: Memory & Data I

Hardware: 351 View (version 1)

12

Memory

CPU

take 469

registers

i-cache

data

instructions

❖ We will start by learning about Memory

❖ Addresses!

▪ Can be stored in pointers

Q2: How does a program
find its data in memory?

CSE351, Autumn 2022L02: Memory & Data I

Reading Review

❖ Terminology:

▪ word size, byte-oriented memory

▪ address, address space

▪ most-significant bit (MSB), least-significant bit (LSB)

▪ big-endian, little-endian

▪ pointer

❖ Questions from the Reading?

13

CSE351, Autumn 2022L02: Memory & Data I

Review Questions

❖ By looking at the bits stored in memory, I can tell
what a particular 4 bytes is being used to represent.

A. True B. False

❖ We can fetch a piece of data from memory as long as
we have its address.

A. True B. False

❖ Which of the following bytes have a most-significant
bit (MSB) of 1?

A. 0x63 B. 0x90 C. 0xCA D. 0xF
14

CSE351, Autumn 2022L02: Memory & Data I

Fixed-Length Binary (Review)

❖ Because storage is finite in reality, everything is
stored as “fixed” length

▪ Data is moved and manipulated in fixed-length chunks

▪ Multiple fixed lengths (e.g., 1 byte, 4 bytes, 8 bytes)

▪ Leading zeros now must be included up to “fill out” the fixed
length

❖ Example: the “eight-bit” representation of the
number 4 is 0b00000100

15

Least Significant Bit (LSB)
Most Significant Bit (MSB)

CSE351, Autumn 2022L02: Memory & Data I

Bits and Bytes and Things (Review)

❖ 1 byte = 8 bits

❖ 𝑛 bits can represent up to 2𝑛 things

▪ Sometimes (oftentimes?) those “things” are bytes!

❖ If an addresses are 𝑎-bits wide, how many distinct
addresses are there?

❖ What does each address refer to?

16

• • •

CSE351, Autumn 2022L02: Memory & Data I

Machine “Words” (Review)

❖ Instructions encoded into machine code (0’s and 1’s)

▪ Historically (still true in some assembly languages), all
instructions were exactly the size of a word

❖ We have chosen to tie word size to address size/width

▪ word size = address size = register size

▪ word size = 𝑤 bits → 2𝑤 addresses

❖ Current x86 systems use 64-bit (8-byte) words

▪ Potential address space: 𝟐𝟔𝟒 addresses
264 bytes  1.8 x 1019 bytes
= 18 billion billion bytes = 18 EB (exabytes)

▪ Actual physical address space: 48 bits
17

CSE351, Autumn 2022L02: Memory & Data I

Data Representations

❖ Sizes of data types (in bytes)

18
To use “bool” in C, you must #include <stdbool.h>

Java Data Type C Data Type IA-32 (old) x86-64

boolean bool 1 1

byte char 1 1

char 2 2

short short int 2 2

int int 4 4

float float 4 4

long int 4 8

double double 8 8

long long long 8 8

long double 8 16

(reference) pointer * 4 8(reference) pointer * 4 8

address size = word size

CSE351, Autumn 2022L02: Memory & Data I

Discussion Question

❖ Over time, computers have grown in word size:

▪ What do you think were some of the causes, advantages,
and disadvantages of this trend?

19

Word size Instruction Set Architecture First? Intel CPU Year Introduced

8-bit ??? (Poor & Pyle) Intel 8008 1972

16-bit x86 Intel 8086 1978

32-bit IA-32 Intel 386 1985

64-bit IA-64 Itanium (Merced) 2001

64-bit x86-64 Xeon (Nocona) 2004

CSE351, Autumn 2022L02: Memory & Data I

Address of Multibyte Data (Review)

❖ Addresses still specify
locations of bytes in memory,
but we can choose to view
memory as a series of chunks
of fixed-sized data instead
▪ Addresses of successive chunks

differ by data size

▪ Which byte’s address should we
use for each word?

❖ The address of any chunk of
memory is given by the address
of the first byte
▪ To specify a chunk of memory,

need both its address and its size

20

32-bit
data

Bytes
64-bit
data

Addr
=
??

Addr
=
??

Addr
=
??

Addr
=
??

Addr
=
??

Addr
=
??

0000

0004

0008

0012

0000

0008

0x00
0x01
0x02
0x03
0x04
0x05
0x06
0x07
0x08
0x09
0x0A
0x0B
0x0C
0x0D
0x0E
0x0F

Addr.
(hex)

CSE351, Autumn 2022L02: Memory & Data I

A Picture of Memory (64-bit view)

❖ A “64-bit (8-byte) word-aligned” view of memory:

▪ In this type of picture, each row is composed of 8 bytes

▪ Each cell is a byte

▪ An aligned, 64-bit
chunk of data will
fit on one row

21

0x04 0x05 0x06 0x070x00 0x01 0x02 0x03

0x00
0x08
0x10
0x18
0x20
0x28
0x30
0x38
0x40
0x48

Address

one word

CSE351, Autumn 2022L02: Memory & Data I

A Picture of Memory (64-bit view)

❖ A “64-bit (8-byte) word-aligned” view of memory:

▪ In this type of picture, each row is composed of 8 bytes

▪ Each cell is a byte

▪ An aligned, 64-bit
chunk of data will
fit on one row

22

one word

0x04 0x05 0x06 0x070x00 0x01 0x02 0x03

0x0C 0x0D 0x0E 0x0F0x08 0x09 0x0A 0x0B

0x00
0x08
0x10
0x18
0x20
0x28
0x30
0x38
0x40
0x48

Address

CSE351, Autumn 2022L02: Memory & Data I

Addresses and Pointers

❖ An address refers to a location in memory

❖ A pointer is a data object that holds an address

▪ Address can point to any data

❖ Value 504 stored as
a word at addr 0x08

▪ 50410 = 1F816

= 0x 00 ... 00 01 F8

❖ Pointer stored at
0x38 points to
address 0x08

23

0x00
0x08
0x10
0x18
0x20
0x28
0x30
0x38
0x40
0x48

Address

00 00 00 00 00 00 01 F8

00 00 00 00 00 00 00 08

64-bit example
(pointers are 64-bits wide)

big-endian

CSE351, Autumn 2022L02: Memory & Data I

Addresses and Pointers

❖ An address refers to a location in memory

❖ A pointer is a data object that holds an address

▪ Address can point to any data

❖ Pointer stored at
0x48 points to
address 0x38

▪ Pointer to a pointer!

❖ Is the data stored
at 0x08 a pointer?

▪ Could be, depending
on how you use it

24

64-bit example
(pointers are 64-bits wide)

big-endian

0x00
0x08
0x10
0x18
0x20
0x28
0x30
0x38
0x40
0x48

Address

00 00 00 00 00 00 01 F8

00 00 00 00 00 00 00 08

00 00 00 00 00 00 00 38

CSE351, Autumn 2022L02: Memory & Data I

Byte Ordering (Review)

❖ How should bytes within a word be ordered in
memory?

▪ Want to keep consecutive bytes in consecutive addresses

▪ Example: store the 4-byte (32-bit) int:

❖ By convention, ordering of bytes called endianness

▪ The two options are big-endian and little-endian
• In which address does the least significant byte go?

• Based on Gulliver’s Travels: tribes cut eggs on different sides
(big, little)

25

CSE351, Autumn 2022L02: Memory & Data I

Byte Ordering

❖ Big-endian (SPARC, z/Architecture)

▪ Least significant byte has highest address

❖ Little-endian (x86, x86-64)

▪ Least significant byte has lowest address

❖ Bi-endian (ARM, PowerPC)

▪ Endianness can be specified as big or little

❖ Example: 4-byte data 0xA1B2C3D4 at address 0x100

26

0x100 0x101 0x102 0x103

01 23 45 67

0x100 0x101 0x102 0x103

67 45 23 01

Big-Endian

Little-Endian

A1 B2 C3 D4

D4 C3 B2 A1

CSE351, Autumn 2022L02: Memory & Data I

Polling Question

❖ We store the value as a word at
address 0x100 in a big-endian, 64-bit machine

❖ What is the byte of data stored at address 0x104?

▪ Vote in Ed Lessons

A. 0x04

B. 0x40

C. 0x01

D. 0x10

E. We’re lost…

27

CSE351, Autumn 2022L02: Memory & Data I

Endianness

❖ Endianness only applies to memory storage

❖ Often programmer can ignore endianness because it
is handled for you

▪ Bytes wired into correct place when reading or storing from
memory (hardware)

▪ Compiler and assembler generate correct behavior (software)

❖ Endianness still shows up:

▪ Logical issues: accessing different amount of data than how
you stored it (e.g., store int, access byte as a char)

▪ Need to know exact values to debug memory errors

▪ Manual translation to and from machine code (in 351)
28

CSE351, Autumn 2022L02: Memory & Data I

Summary

❖ Memory is a long, byte-addressed array

▪ Word size bounds the size of the address space and memory

▪ Different data types use different number of bytes

▪ Address of chunk of memory given by address of lowest byte
in chunk

❖ Pointers are data objects that hold addresses

▪ Type of pointer determines size of thing being pointed at,
which could be another pointer

❖ Endianness determines memory storage order for
multi-byte data

▪ Least significant byte in lowest (little-endian) or highest (big-
endian) address of memory chunk

29

