
CSE351, Winter 2021M10-L1: Java and C

Java and C (condensed)
CSE 351 Winter 2021

Instructor: Teaching Assistants:

Mark Wyse Kyrie Dowling Catherine Guevara Ian Hsiao

Jim Limprasert Armin Magness Allie Pfleger

Cosmo Wang Ronald Widjaja

http://xkcd.com/801/

http://xkcd.com/801/

CSE351, Winter 2021M10-L1: Java and C

Administrivia

❖ hw22 due Friday

❖ hw23 due Monday 3/15

❖ Study Guide 2 due Wednesday 3/17

▪ no late submissions!

❖ Lab 5 due Wednesday 3/17

▪ no late submissions!

❖ Course evaluations now open

▪ See Ed Discussion post for link

2

CSE351, Winter 2021M10-L1: Java and C

Roadmap

3

car *c = malloc(sizeof(car));

c->miles = 100;

c->gals = 17;

float mpg = get_mpg(c);

free(c);

Car c = new Car();

c.setMiles(100);

c.setGals(17);

float mpg =

c.getMPG();

get_mpg:

pushq %rbp

movq %rsp, %rbp

...

popq %rbp

ret

Java:C:

Assembly
language:

Machine
code:

0111010000011000

100011010000010000000010

1000100111000010

110000011111101000011111

Computer
system:

OS:

Memory & data
Integers & floats
x86 assembly
Procedures & stacks
Executables
Arrays & structs
Memory & caches
Processes
Virtual memory
Memory allocation
Java vs. C

CSE351, Winter 2021M10-L1: Java and C

Java vs. C

❖ Reconnecting to Java (hello CSE143!)

▪ But now you know a lot more about what really happens
when we execute programs

❖ We’ve learned about the following items in C; now
we’ll see what they look like for Java:

▪ Representation of data

▪ Pointers / references

▪ Casting

▪ Function / method calls including dynamic dispatch

4

CSE351, Winter 2021M10-L1: Java and C

Worlds Colliding

❖ CSE351 has given you a “really different feeling”
about what computers do and how programs execute

❖ We have occasionally contrasted to Java, but CSE143
may still feel like “a different world”

▪ It’s not – it’s just a higher-level of abstraction

▪ Connect these levels via how-one-could-implement-Java in
351 terms

5

CSE351, Winter 2021M10-L1: Java and C

Meta-point to this lecture

❖ None of the data representations we are going to talk
about are guaranteed by Java

❖ In fact, the language simply provides an abstraction
(Java language specification)

▪ Tells us how code should behave for different language
constructs, but we can't easily tell how things are really
represented

▪ But it is important to understand an implementation of the
lower levels – useful in thinking about your program

6

CSE351, Winter 2021M10-L1: Java and C

Data in Java

❖ Integers, floats, doubles, pointers – same as C

▪ “Pointers” are called “references” in Java, but are much
more constrained than C’s general pointers

▪ Java’s portability-guarantee fixes the sizes of all types
• Example: int is 4 bytes in Java regardless of machine

▪ No unsigned types to avoid conversion pitfalls
• Added some useful methods in Java 8 (also use bigger signed types)

❖ null is typically represented as 0 but “you can’t tell”

❖ Much more interesting:

▪ Arrays

▪ Characters and strings

▪ Objects
7

CSE351, Winter 2021M10-L1: Java and C

Data in Java: Arrays

❖ Every element initialized to 0 or null

❖ Length specified in immutable field at start of array (int: 4B)
▪ array.length returns value of this field

❖ Since it has this info, what can it do?

8

int array[5];

Java:

C:

0 4 20

?? ?? ?? ?? ??

5 00 00 00 00 00

0 4 20 24

int[] array = new int[5];

CSE351, Winter 2021M10-L1: Java and C

Data in Java: Arrays

❖ Every element initialized to 0 or null

❖ Length specified in immutable field at start of array (int: 4B)
▪ array.length returns value of this field

❖ Every access triggers a bounds-check
▪ Code is added to ensure the index is within bounds

▪ Exception if out-of-bounds

9

int array[5];

Java:

C:

0 4 20

?? ?? ?? ?? ??

To speed up bounds-checking:
• Length field is likely in cache
• Compiler may store length field

in register for loops
• Compiler may prove that some

checks are redundant
5 00 00 00 00 00

0 4 20 24

int[] array = new int[5];

CSE351, Winter 2021M10-L1: Java and C

Data in Java: Characters & Strings

❖ Two-byte Unicode instead of ASCII
▪ Represents most of the world’s alphabets

❖ String not bounded by a '\0' (null character)

▪ Bounded by hidden length field at beginning of string

❖ All String objects read-only (vs. StringBuffer)

10

Example: the string “CSE351”

43 \0

0 1 4

53 45 33 35 31

7

C:
(ASCII)

Java:
(Unicode)

16

6 43 00 53 00 45 00 33 00 35 00 31 00

0 4 8

CSE351, Winter 2021M10-L1: Java and C

Data in Java: Objects

❖ Data structures (objects) are always stored by reference, never
stored “inline”
▪ Include complex data types (arrays, other objects, etc.) using references

11

C:

▪ a[] stored “inline” as part of
struct

struct rec {

int i;

int a[3];

struct rec *p;

};

Java:

▪ a stored by reference in object

class Rec {

int i;

int[] a = new int[3];

Rec p;

...

}

i a p

0 4 16 24

i a p

0 4 2012

4 16

3

0

CSE351, Winter 2021M10-L1: Java and C

Pointer/reference fields and variables

❖ In C, we have “->” and “.” for field selection depending on
whether we have a pointer to a struct or a struct
▪ (*r).a is so common it becomes r->a

❖ In Java, all non-primitive variables are references to objects
▪ We always use r.a notation

▪ But really follow reference to r with offset to a, just like r->a in C

▪ So no Java field needs more than 8 bytes

12

struct rec *r = malloc(...);

struct rec r2;

r->i = val;

r->a[2] = val;

r->p = &r2;

r = new Rec();

r2 = new Rec();

r.i = val;

r.a[2] = val;

r.p = r2;

C: Java:

CSE351, Winter 2021M10-L1: Java and C

Pointers/References

❖ Pointers in C can point to any memory address

❖ References in Java can only point to [the starts of] objects
▪ Can only be dereferenced to access a field or element of that object

13

struct rec {

int i;

int a[3];

struct rec *p;

};

struct rec* r = malloc(…);

some_fn(&(r->a[1])); // ptr

class Rec {

int i;

int[] a = new int[3];

Rec p;

}

Rec r = new Rec();

some_fn(r.a, 1); // ref, index

r r

i a p

0 4 16 24

i a p

0 4 2012

int[3]

4 16

3

0

Java:C:

CSE351, Winter 2021M10-L1: Java and C

Casting in C (example from Lab 5)

❖ Can cast any pointer into any other pointer
▪ Changes dereference and arithmetic behavior

14

struct BlockInfo {

size_t sizeAndTags;

struct BlockInfo* next;

struct BlockInfo* prev;

};

typedef struct BlockInfo BlockInfo;

...

int x;

BlockInfo* b;

BlockInfo* newBlock;

...

newBlock = (BlockInfo*) ((char*) b + x);

...

Cast back into
BlockInfo* to use
as BlockInfo struct

Cast b into char* to
do unscaled addition

s n p

80 16 24

s n p

x

CSE351, Winter 2021M10-L1: Java and C

Type-safe casting in Java
❖ Can only cast compatible object references

▪ Based on class hierarchy

15

Vehicle v = new Vehicle(); // super class of Boat and Car

Boat b1 = new Boat(); // |--> sibling

Car c1 = new Car(); // |--> sibling

Vehicle v1 = new Car();

Vehicle v2 = v1;

Car c2 = new Boat();

Car c3 = new Vehicle();

Boat b2 = (Boat) v;

Car c4 = (Car) v2;

Car c5 = (Car) b1;

class Vehicle {

int passengers;

}

class Boat extends Vehicle {

int propellers;

}

class Car extends Vehicle {

int wheels;

}

class Object {

...

}

CSE351, Winter 2021M10-L1: Java and C

Vehicle v = new Vehicle(); // super class of Boat and Car

Boat b1 = new Boat(); // |--> sibling

Car c1 = new Car(); // |--> sibling

Vehicle v1 = new Car();

Vehicle v2 = v1;

Car c2 = new Boat();

Car c3 = new Vehicle();

Boat b2 = (Boat) v;

Car c4 = (Car) v2;

Car c5 = (Car) b1;

Type-safe casting in Java
❖ Can only cast compatible object references

▪ Based on class hierarchy

16

class Vehicle {

int passengers;

}

class Boat extends Vehicle {

int propellers;

}

class Car extends Vehicle {

int wheels;

}

class Object {

...

}

✓ Everything needed for Vehicle also in Car
✓ v1 is declared as type Vehicle
✗ Compiler error: Incompatible type – elements in

Car that are not in Boat (siblings)
✗ Compiler error: Wrong direction – elements Car

not in Vehicle (wheels)
✗ Runtime error: Vehicle does not contain all

elements in Boat (propellers)
✓ v2 refers to a Car at runtime
✗ Compiler error: Unconvertable types – b1 is

declared as type Boat

CSE351, Winter 2021M10-L1: Java and C

Java Object Definitions

17

class Point {

double x;

double y;

Point() {

x = 0;

y = 0;

}

boolean samePlace(Point p) {

return (x == p.x) && (y == p.y);

}

}

...

Point p = new Point();

...

constructor

fields

method(s)

creation

CSE351, Winter 2021M10-L1: Java and C

Java Objects and Method Dispatch

❖ Virtual method table (vtable)
▪ Like a jump table for instance (“virtual”) methods plus other class info

▪ One table per class

▪ Each object instance contains a vtable pointer (vptr)

❖ Object header : GC info, hashing info, lock info, etc.

18

code for Point() code for samePlace()

vtable for class Point:

q

xvptr yheader

Point object

p
xvptr yheader

Point object

CSE351, Winter 2021M10-L1: Java and C

Java Constructors

❖ When we call new: allocate space for object (data fields and
references), initialize to zero/null, and run constructor method

19

Point p = new Point(); Point* p = calloc(1,sizeof(Point));

p->header = ...;

p->vptr = &Point_vtable;

p->vptr[0](p);

Java:

code for Point() code for samePlace()

vtable for class Point:

p
xvptr yheader

Point object

C pseudo-translation:

CSE351, Winter 2021M10-L1: Java and C

Java Methods

❖ Static methods are just like functions

❖ Instance methods:
▪ Can refer to this;
▪ Have an implicit first parameter for this; and
▪ Can be overridden in subclasses

❖ The code to run when calling an instance method is chosen at
runtime by lookup in the vtable

20

p.samePlace(q); p->vptr[1](p, q);

Java: C pseudo-translation:

code for Point() code for samePlace()

vtable for class Point:

p

xvptr yheader

Point object

CSE351, Winter 2021M10-L1: Java and C

Subclassing

❖ Where does “z” go? At end of fields of Point

▪ Point fields are always in the same place, so Point code can run on
ThreeDPoint objects without modification

❖ Where does pointer to code for two new methods go?
▪ No constructor, so use default Point constructor

▪ To override “samePlace”, use same vtable position

▪ Add new pointer at end of vtable for new method “sayHi”

21

class ThreeDPoint extends Point {

double z;

boolean samePlace(Point p2) {

return false;

}

void sayHi() {

System.out.println("hello");

}

}

CSE351, Winter 2021M10-L1: Java and C

Subclassing

22

New code for
samePlace

Old code for
constructor

sayHi tacked on at end
Code for
sayHi

class ThreeDPoint extends Point {

double z;

boolean samePlace(Point p2) {

return false;

}

void sayHi() {

System.out.println("hello");

}

}

xvptr yheader

ThreeDPoint object

z

constructor samePlacevtable for ThreeDPoint:
(not Point)

sayHi

z tacked on at end

CSE351, Winter 2021M10-L1: Java and C

code for Point()

code for Point’s samePlace()
Point vtable:

xvptr yheader

Point object

p ???

Dynamic Dispatch

23

Point p = ???;

return p.samePlace(q);

// works regardless of what p is

return p->vptr[1](p, q);

Java: C pseudo-translation:

code for 3DPoint’s samePlace()

code for sayHi()

xvptr yheader

ThreeDPoint object

z

ThreeDPoint vtable:

CSE351, Winter 2021M10-L1: Java and C

Ta-da!

❖ In CSE143, it may have seemed “magic” that an
inherited method could call an overridden method

▪ You were tested on this endlessly

❖ The “trick” in the implementation is this part:
p->vptr[i](p,q)

▪ In the body of the pointed-to code, any calls to (other)
methods of this will use p->vptr

▪ Dispatch determined by p, not the class that defined a
method

24

CSE351, Winter 2021M10-L1: Java and C

Implementing Programming Languages

❖ Many choices in programming model implementation

▪ We’ve previously discussed compilation

▪ One can also interpret

❖ Interpreters have a long history and are still in use

▪ e.g., Lisp, an early programming language, was interpreted

▪ e.g., Python, Javascript, Ruby, Matlab, PHP, Perl, …

25Hardware

Your source code

Binary executable

Hardware

Interpreter
implementation

Interpreter binary

Your source code

CSE351, Winter 2021M10-L1: Java and C

Interpreters

❖ Execute (something close to) the source code directly, meaning
there is less translation required
▪ This makes it a simpler program than a compiler and often provides

more transparent error messages

❖ Easier to run on different architectures – runs in a simulated
environment that exists only inside the interpreter process
▪ Just port the interpreter (program), and then

interpreting the source code is the same

❖ Interpreted programs tend to be
slower to execute and
harder to optimize

26Hardware

Interpreter
implementation

Interpreter binary

Your source code

CSE351, Winter 2021M10-L1: Java and C

Interpreters vs. Compilers

❖ Programs that are designed for use with particular
language implementations

▪ You can choose to execute code written in a particular language
via either a compiler or an interpreter, if they exist

❖ “Compiled languages” vs. “interpreted languages” a
misuse of terminology

▪ But very common to hear this

▪ And has some validation in the real world (e.g., JavaScript vs. C)

❖ Some modern language implementations are a mix

▪ e.g., Java compiles to bytecode that is then interpreted

▪ Doing just-in-time (JIT) compilation of parts to assembly for
performance

27

CSE351, Winter 2021M10-L1: Java and C

Compiling and Running Java

1. Save your Java code in a .java file

2. To run the Java compiler:
▪ javac Foo.java

▪ The Java compiler converts Java into Java bytecodes
• Stored in a .class file

3. To execute the program stored in the bytecodes,
these can be interpreted by the Java Virtual Machine
(JVM)
▪ Running the virtual machine: java Foo

▪ Loads Foo.class and interprets the bytecodes
28

CSE351, Winter 2021M10-L1: Java and C

“The JVM”

❖ Java programs are usually run by a
Java virtual machine (JVM)

▪ JVMs interpret an intermediate language called Java
bytecode

▪ Many JVMs compile bytecode to native machine code
• Just-in-time (JIT) compilation

• http://en.wikipedia.org/wiki/Just-in-time_compilation

▪ Java is sometimes compiled ahead of time (AOT) like C

29

Note: The JVM is different than the CSE VM running
on VMWare. Yet another use of the word “virtual”!

http://en.wikipedia.org/wiki/Just-in-time_compilation

CSE351, Winter 2021M10-L1: Java and C

Virtual Machine Model

30

High-Level Language Program
(e.g., Java, C)

Virtual Machine Language
(e.g., Java bytecodes)

Native Machine Language

(e.g., x86, ARM, MIPS)

Bytecode compiler
(e.g., javac Foo.java)

Virtual machine (interpreter)
(e.g., java Foo)

Ahead-of-time
compiler

JIT
compiler

run time

compile time

CSE351, Winter 2021M10-L1: Java and C

Java Bytecode

❖ Like assembly code for JVM,
but works on all JVMs
▪ Hardware-independent!

❖ Typed (unlike x86 assembly)

❖ Strong JVM protections

31

0 1 2 3 4 n

variable table

operand stack

constant
pool

Holds pointer this

Other arguments to method

Other local variables

CSE351, Winter 2021M10-L1: Java and C

JVM Operand Stack

32

iload 1 // push 1st argument from table onto stack

iload 2 // push 2nd argument from table onto stack

iadd // pop top 2 elements from stack, add together, and

// push result back onto stack

istore 3 // pop result and put it into third slot in table

mov 8(%ebp), %eax

mov 12(%ebp), %edx

add %edx, %eax

mov %eax, -8(%ebp)

Compiled
to (IA32) x86:

Bytecode:

0 1 2 3 4 n

constant
pool

variable table
operand stack

JVM:

Holds pointer this

Other arguments to method
Other local variables

‘i’ = integer,
‘a’ = reference,
‘b’ for byte,
‘c’ for char,
‘d’ for double, ...

No registers or stack locations!
All operations use operand stack

CSE351, Winter 2021M10-L1: Java and C

A Simple Java Method

33

Method java.lang.String getEmployeeName()

0 aload 0 // "this" object is stored at 0 in the var table

1 getfield #5 <Field java.lang.String name>

// getfield instruction has a 3-byte encoding

// Pop an element from top of stack, retrieve its

// specified instance field and push it onto stack

// "name" field is the fifth field of the object

4 areturn // Returns object at top of stack

2A B4 00 05 B0As stored in the .class file:

http://en.wikipedia.org/wiki/Java_bytecode_instruction_listings

0

aload_0 getfield 00 05 areturn

1 4Byte number:

http://en.wikipedia.org/wiki/Java_bytecode_instruction_listings

CSE351, Winter 2021M10-L1: Java and C

Class File Format

❖ Every class in Java source code is compiled to its own class file

❖ 10 sections in the Java class file structure:
▪ Magic number: 0xCAFEBABE (legible hex from James Gosling – Java’s inventor)

▪ Version of class file format: The minor and major versions of the class file

▪ Constant pool: Set of constant values for the class

▪ Access flags: For example whether the class is abstract, static, final, etc.

▪ This class: The name of the current class

▪ Super class: The name of the super class

▪ Interfaces: Any interfaces in the class

▪ Fields: Any fields in the class

▪ Methods: Any methods in the class

▪ Attributes: Any attributes of the class (for example, name of source file, etc.)

❖ A .jar file collects together all of the class files needed for
the program, plus any additional resources (e.g., images)

34

CSE351, Winter 2021M10-L1: Java and C

Disassembled
Java Bytecode

35

Compiled from Employee.java

class Employee extends java.lang.Object {

public Employee(java.lang.String,int);

public java.lang.String getEmployeeName();

public int getEmployeeNumber();

}

Method Employee(java.lang.String,int)

0 aload_0

1 invokespecial #3 <Method java.lang.Object()>

4 aload_0

5 aload_1

6 putfield #5 <Field java.lang.String name>

9 aload_0

10 iload_2

11 putfield #4 <Field int idNumber>

14 aload_0

15 aload_1

16 iload_2

17 invokespecial #6 <Method void

storeData(java.lang.String, int)>

20 return

Method java.lang.String getEmployeeName()

0 aload_0

1 getfield #5 <Field java.lang.String name>

4 areturn

Method int getEmployeeNumber()

0 aload_0

1 getfield #4 <Field int idNumber>

4 ireturn

Method void storeData(java.lang.String, int)

…

> javac Employee.java

> javap -c Employee

http://en.wikipedia.org/wiki/Java
_bytecode_instruction_listings

http://en.wikipedia.org/wiki/Java_bytecode_instruction_listings

CSE351, Winter 2021M10-L1: Java and C

Other languages for JVMs

❖ JVMs run on so many computers that compilers have been
built to translate many other languages to Java bytecode:
▪ AspectJ, an aspect-oriented extension of Java

▪ ColdFusion, a scripting language compiled to Java

▪ Clojure, a functional Lisp dialect

▪ Groovy, a scripting language

▪ JavaFX Script, a scripting language for web apps

▪ JRuby, an implementation of Ruby

▪ Jython, an implementation of Python

▪ Rhino, an implementation of JavaScript

▪ Scala, an object-oriented and functional programming language

▪ And many others, even including C!

❖ Originally, JVMs were designed and built for Java (still the
major use) but JVMs are also viewed as a safe, GC’ed platform

36

CSE351, Winter 2021M10-L1: Java and C

Microsoft’s C# and .NET Framework

❖ C# has similar motivations as Java
▪ Virtual machine is called the

Common Language Runtime

▪ Common Intermediate Language
is the bytecode for C# and other
languages in the .NET framework

37

CSE351, Winter 2021M10-L1: Java and C

We made it! ☺😎😂

38

car *c = malloc(sizeof(car));

c->miles = 100;

c->gals = 17;

float mpg = get_mpg(c);

free(c);

Car c = new Car();

c.setMiles(100);

c.setGals(17);

float mpg =

c.getMPG();

get_mpg:

pushq %rbp

movq %rsp, %rbp

...

popq %rbp

ret

Java:C:

Assembly
language:

Machine
code:

0111010000011000

100011010000010000000010

1000100111000010

110000011111101000011111

Computer
system:

OS:

Memory & data
Integers & floats
x86 assembly
Procedures & stacks
Executables
Arrays & structs
Memory & caches
Processes
Virtual memory
Memory allocation
Java vs. C

