YW UNIVERSITY of WASHINGTON

M10-L1: Javaand C

Java and C (condensed)

CSE 351 Winter 2021

CSE351, Winter 2021

Instructor: Teaching Assistants:
Mark Wyse Kyrie Dowling Catherine Guevara lan Hsiao
Jim Limprasert Armin Magness Allie Pfleger
Cosmo Wang Ronald Widjaja
SERIOUSLY? THIS T BET THEY ACTUALLY HIRED SOMEONE | | WELL, YOU KNOW WHAT THEY SAY—
THING RUNS JAVA? | | To SPEND Six MONTHS PORTING THIS | | WHEN ALLYOU HAVE IS A PAIR OF
ITS SINGLE-PURRDSE | | JWM 50 THEY COULD WRITE THEIR 20 BOLT CUTTERS AND A BOTTLE OF VODKA,
HARDWARE! UNES OF CODE INA FAMILIAR SETIING. | | EVERYTHING LOOKS LIKE THE LOCK ON
THE DOOR OF WOLF BLITZER’S BOATHOUSE.
7\ o/
Gﬂ /i
IMGLAD
YOU HAD A
[} NICE. NIGHT

http://xkcd.com/801/

http://xkcd.com/801/

YA UNIVERSITY of WASHINGTON M10-L1: Javaand C

Administrivia

+» hw22 due Friday
+» hw23 due M%nday 3/15
+» Study Guide 2 due Wednesday 3/17

" no late submissions!

+» Lab 5 due Wednesday 3/17

" no late submissions!

4& Course evaluations now open
= See Ed Discussion post for link

CSE351, Winter 2021

YA UNIVERSITY of WASHINGTON M10-L1: Javaand C CSE351, Winter 2021

C: Java: Memory & data
car *c = malloc(sizeof (car)); Car ¢ = new Car{():; Integers & floats
c->miles = 100; c.setMiles (100) ; x86 assembly
c->gals = 17; c.setGals (17); Procedures & stacks
float mpg = get mpg(c); float mpg = Executables
free(c); c.getMPG () ; Arrays & structs
— = Memory & caches
Assembly get_mpg}:'1) Processes
. pushqg srbp .
language: — Srsp, Srbp Virtual memory
e emory allocation
o s
popq %rbp O w
ret I .
¥ ,
Machine 0111010000011000
de: 100011010000010000000010
code: 1000100111000010
110000011111101000011111

Computer
system:

YW UNIVERSITY of WASHINGTON M10-L1: Javaand C CSE351, Winter 2021

Java vs. C

+ Reconnecting to Java (hello CSE143!)

" But now you know a lot more about what really happens
when we execute programs

+» We’ve learned about the following items in C; now
we’ll see what they look like for Java:
" Representation of data
= Pointers / references
= Casting
" Function / method calls including dynamic dispatch

YW UNIVERSITY of WASHINGTON

M10-L1: Javaand C

CSE351, Winter 2021

Worlds Colliding

« CSE351 has given you a “really different feeling”
about what computers do and how programs execute

+» We have occasionally contrasted to Java, but CSE143
may still feel like “a different world”

" |t’s not —it’s just a higher-level of abstraction

= Connect these levels via how-one-could-implement-Java in
351 terms

YA UNIVERSITY of WASHINGTON M10-L1: Javaand C

CSE351, Winter 2021

Meta-point to this lecture

+» None of the data representations we are going to talk
about are guaranteed by Java

+ In fact, the language simply provides an abstraction
(Java language specification)

= Tells us how code should behave for different language

constructs, but we can't easily tell how things are really
represented

= Butitisimportant to understand an implementation of the
lower levels — useful in thinking about your program

YA UNIVERSITY of WASHINGTON M10-L1: Javaand C

CSE351, Winter 2021

Data in Java e
» (
+ Integers, floats, doubles, pointers —same as C

= “Pointers” are called “references” in Java, but are much

more constrained than C’s general pointers
/’_—_———

= Java’s portability-guarantee fixes the sizes of all types
- Example: int is 4 bytes in Java regardless of machine

= No unsigned types to avoid conversion pitfalls

- Added some useful methods in Java 8 (also use bigger signed types)

2 nult&\ié typically represented as 0 but “you can’t tell”
%~ Much more interesting:

" Arrays

= Characters and strings

= Objects

YW UNIVERSITY of WASHINGTON M10-L1: Javaand C CSE351, Winter 2021

Data in Java: Arrays

Every element initialized to 0 or null

Length specified in immutable field at start of array (int: 4B)
" array.length returns value of this field

+ Since it has this info, what can it do?

C: int array[5];

Fard IEard Irard Irard Ieats
0 4 20

Java: ili[larray = new int[5];
5 J00]100100J00|00

0 4- 20 24

YW UNIVERSITY of WASHINGTON M10-L1: Javaand C CSE351, Winter 2021

Data in Java: Arrays

+ Every element initialized to O or null
+ Length specified in immutable field at start of array (int: 4B)

" array.length returns value of this field

Every access triggers a bounds-check
" Code is added to ensure the index is within bounds

= Exception if out-of-bounds

C: int array[5]; To speed up bounds-checking:
* Length field is likely in cache
* Compiler may store length field

Fard IEard Irard Irard Ieats

o 20 in register for loops
Java: int[] array = new int[5]; * Compiler may prove that some
5 {oolooloolooloo checks are redundant

0 4 20 24

YA UNIVERSITY of WASHINGTON M10-L1: Javaand C

Data in Java: Characters & Strings

» Two-byte Unicode instead of ASCII
= Represents most of the world’s alphabets

» String not bounded by a '\ 0"' (null character)
= Bounded by hidden length field at beginning of string

» All String objects read-only (vs. StringBuffer)

Example: the string “CSE351”
c S ¥ 3 % \

CSE351, Winter 2021

C: 43(53|45]33]35[31[\0 »“’:“
(ASCII) . 7 . 6"»
C S C 3 S
.la\(a: 6 43l00]53]00]45|00(33|00[35]00(31]00
(Unicode) Qtvb)‘\"] I — ey — _{ 16

10

CSE351, Winter 2021

YA UNIVERSITY of WASHINGTON M10-L1: Javaand C

Data in Java: Objects

+ Data structures (objects) are always stored by reference, never

stored “inline”
"= |nclude complex data types (arrays, other objects, etc.) using references

C: Java:
f struct rec { class Rec {
int 1i; int 1i;
0;* int a[3]; -2 [#%a int[] a = new int[3];
v struct rec *p; = wmotlor 0 Rec p;
-1
= a[] stored “inline” as part of }

= a stored by reference in object

/a 1(a P

o é 0 12 20

1la
0 4 16 24 \ 3
- AD

0 4 lo 11

struct

YW UNIVERSITY of WASHINGTON M10-L1: Javaand C CSE351, Winter 2021

Pointer/reference fields and variables

% In C, we have b and]” .”for field selection depending on
whether we have a pointer to a struct or a struct

" (*r) .aissocommon it becomes r->a
—_——

+ InJava, all non-primitive variables are references to objects

= We always useotation

= But really follow reference to r with offset to a, just like r-=>ain C

. e

® So no Java field needs more than 8 bytes :

C: Java:

struct rec *r = malloc(...); r = new Rec();

struct rec r2; r2 = new Rec|();

r->i = val; r.1 = val;

r->al2] = val; r.al[2] = val;
<?—>p = &r2> é r.p = r%

12

M10-L1: Javaand C

YW UNIVERSITY of WASHINGTON

Pointers/References

*

+ Pointers in C can point to ang memory address

References in Java can only point to [the starts of] objects
= Can only be dereferenced to access a field or element of that object

C: Java:
struct rec { class Rec {
int i; int 1i;
int a[3]; int[] a = new int[3];
struct rec *p; Rec p;
¥ }
struct rec* r = malloc(..); Rec r = new Rec();
some fn(&(r->alll)); // ptr some fn(r.a, 1); // ref, index
r r / >
[s e ? D é
ilar o ¢ 0 4 [12 \@20
0O 4 16 24

3 in%&]

4 lo 13

CSE351, Winter 2021

YA UNIVERSITY of WASHINGTON M10-L1: Javaand C

Casting in C (example from Lab 5)

CSE351, Winter 2021

Can cast any pointer into any other pointer

= Changes dereference and arithmetic behavior

struct BlockInfo {
size t sizeAndTags;
struct BlockInfo* next;
struct BlockInfo* prev;

i

typedef struct BlockInfo BlockInfo;

int x;
BlockInfo* b;
BlockInfo* newBlock;

Cast b into char* to
do unscaled addition

Cast back into
RlockInfo* to use
as BlockInfo struct

newBlock = (BlockInfo*) ((char*) b + x
L
s|n|p S|n|pP

0 8 1lo 24 X

YW UNIVERSITY of WASHINGTON M10-L1: Javaand C CSE351, Winter 2021

Type-safe casting in Java

+ Can only cast compatible object references gl Vo3

® Based on class hlerarchy cléss Boat extends Vehicle { hﬁ*&
int propellers; ')
sS4 wc\esy } P>
2lzss Object ¢ 2lzes velidole class Car extends Vehicle { P
} .. > } int passengers; Lt vheeles
}

Vehicle v = new Vehicle(); // super class of Boat and Car

I.Boat bl = new Boat|(); // |-=-> sibling
Car cl = new Car () ; // |-=-> sibling
l Vehicle vl = new Car|();
V vehicle v2 = v1;
Car c2 = new Boat();
Car c3 = new Vehicle () ;

Boat b2 = (Boat) v;

Car c4 = (Car) v2;
Car chb = (Car) Dbl;

15

YW UNIVERSITY of WASHINGTON M10-L1: Javaand C CSE351, Winter 2021

Type-safe casting in Java
+ Can only cast compatible object references

] Based on CIaSS hlerarchy class Boat extends Vehicle {

int propellers;

}

class Object { class Vehicle {
> int passengers;

} })

class Car extends Vehicle {
int wheels;

Vehicle v,= new Vehicle(); // super class of Boat and Car
Boat bl = new Boat () ; // |-=-> sibling
Car cl\= new Car () ; // |-=-> sibling

Vehicle Car () ; «—— / Everything needed for Vehicle alsoin Car

Vehicle «—— / vlisdeclared as type Vehicle

Car Boat () ; +——— X Compiler error: Incompatible type — elements in
Car thatare notin Boat (siblings!

Car w Vehicle () ; «—— X Compiler error: Wrong direction — elements Car
notin Vehicle (wheels)

Boat V; «—— X Runtime error: Vehicle does not contain all
elements in Boat (propellers)

Car c4d = (Car) v2; «—— / v2 referstoaCar at runtime

Car c5 = (Car) Dbl; «— X Compiler error: Unconvertable types —b1 is

declared as type Boat 16

YA UNIVERSITY of WASHINGTON M10-L1: Javaand C

Java Object Definitions

CSE351, Winter 2021

class Point {

double x;
double v; <

fields

Point () { €
x = 0;
y = 0;

boolean samePlace (Point p)

{

return (x == p.x) && (y == p.Vy);

}

constructor

— method(s)

—

Point p = new Point () ;<

creation

17

YA UNIVERSITY of WASHINGTON M10-L1: Javaand C

CSE351, Winter 2021

Java Objects and Method Dispatch

Point object

P —

header | vptr ° X Y%
vtable for class Point: o
e

|
: code for Point () code for samePlace ()

. Point object

header |vptr X Y

« Virtual method table (vtable)

= Like a jump table for instance (“virtual”) methods plus other class info
"= One table per class

= Each object instance contains a vtable pointer (vptr)

+ Object header : GC info, hashing info, lock info, etc.

\/

18

YW UNIVERSITY of WASHINGTON M10-L1: Javaand C CSE351, Winter 2021

Java Constructors

<+ When we call new: allocate space for object (data fields and
references), initialize to zero/null, and run constructor method

< —r
Java: C pseudo-translation:
Point p = new Point(); Point* p = calloc(1l,sizeof (Point)) ;
p->header = ...; Sowmshar.--

p->vptr = &Point vtable;
p->vptr[0] (p); xnua\‘iv\\ ‘MW‘W

——

Point object

S

header |vptr ° X Y
v

vtable for class Point: y o

K} code for Point () code for samePlace ()

19

YW UNIVERSITY of WASHINGTON

M10-L1: Javaand C

CSE351, Winter 2021

Java Methods

+ Static methods are just like functions

« Instance methods:

= Can refer to this;

= Have an implicit first parameter for this; and
= Can be overridden in subclasses

+ The code to run when calling an instance method is chosen at
runtime by lookup in the vtable

Java: C pseudo-translation:_}a .
p.samePlace (q) ; p->vptr[l] (p, 9 o
. Point object
header | vptr X Y
vtable for class Point: y o—

K} code for Point ()

code for samePlace ()

20

YW UNIVERSITY of WASHINGTON M10-L1: Javaand C CSE351, Winter 2021

Subclassing («r

class ThreeDPoint extends Point {
double z;
boolean samePlace (Point p2) {
return false;

}
void sayHi () {

System.out.println ("hello");
}

+ Where does “z” go? At end of fields of Point
"= Point fields are always in the same place, so Point code can run on
ThreeDPoint objects without modification
+ Where does pointer to code for two new methods go?
= No constructor, so use default Point constructor
= To override “samePlace”, use same vtable position
= Add new pointer at end of vtable for new method “sayHi”

21

YW UNIVERSITY of WASHINGTON M10-L1: Javaand C CSE351, Winter 2021

Subclassing

class ThreeDPoint extends Point {
double z;
boolean samePlace (Point p2) {
return false;
}
void sayHi () {
System.out.println ("hello");

z tacked on at end
ThreeDPoint object ‘

header | vptr

X Y zZ

sayHi tackfd on at end Code for
/ i sayHi
¢

vtable forlThreeDPoint: constructor @ samePlace ? sayHi

(not Point) \EN

Old code for =# New code for
constructor samePlace

22

YW UNIVERSITY of WASHINGTON M10-L1: Javaand C CSE351, Winter 2021

Dynamic Dispatch

Point object

header |vptr X Y

i nt vtable: & h

F).-e>'?y?? ﬂluJThnﬂJ(h

code for Point’s samePlace ()

W ﬂﬂ‘)ﬂ,ﬁ»(’) code for Point ()
@eeDPoint object ﬁ
header | vptr X % Z

_——>»| code for sayHi ()

ThreeDPoint vtable: .\ — |
code for 3DPoint’s samePlace ()

Java: C pseudo-translation:
Point p = 2?2°?; // works regardless of what p is
return p.samePlace(q); return p->vptrll] (p, 9):

—_ 23

YW UNIVERSITY of WASHINGTON M10-L1: Javaand C CSE351, Winter 2021

Ta-da!

+ In CSE143, it may have seemed “magic” that an
inherited method could call an overridden method

" You were tested on this endlessly

+» The “trick” in the implementation is this part:

p->vptr [1] (P ’ q)
" |In the body of the pointed-to code, any calls to (other)
methods of this will use p—>vptr

= Dispatch determined by p, not the class that defined a
method

24

YW UNIVERSITY of WASHINGTON M10-L1: Javaand C CSE351, Winter 2021

Implementing Programming Languages

+» Many choices in programming model implementation
= We've previously discussed compilation
= One can also interpret
+ Interpreters have a long history and are still in use
= e.g., Lisp, an early programming language, was interpreted
= e.g., Python, Javascript, Ruby, Matlab, PHP, Perl, ...

Conrg\ & in
¢ | Your sdurce code

Binary executable
|(Hardware _‘

Interpreter
implementation

¢

s&—
® \ e
e AT o

Your source code -\ /-

PN

Interpreter binary
|(Hardware _‘ 25

YA UNIVERSITY of WASHINGTON M10-L1: Javaand C

CSE351, Winter 2021

Interpreters

0

Execute (something close to) the source code directly, meaning

there is less translation required

= This makes it a simpler program than a compiler and often provides

more transparent error messages

Easier to run on different architectures — runs in a simulated
environment that exists only inside the interpreter process

= Just port the interpreter (program), and then
interpreting the source code is the same

Interpreted programs tend to be
slower to execute and

Vof\“"«%

harder to optimize

Your source code

PN

Interpreter
implementation

N

|

Interpreter binary

Hardware

YW UNIVERSITY of WASHINGTON M10-L1: Javaand C CSE351, Winter 2021

Interpreters vs. Compilers

+» Programs that are designed for use with particular
language implementations

" You can choose to execute code written in a particular language
via either a compiler or an interpreter, if they exist

+» “Compiled languages” vs. “interpreted languages” a
misuse of terminology
= But very common to hear this
= And has some validation in the real world (e.g., JavaScript vs. C)

+» Some modern language implementations are a mix
= e.g., Java compiles to bytecode that is then interpreted

" Doing just-in-time (JIT) compilation of parts to assembly for
performance

27

YW UNIVERSITY of WASHINGTON

M10-L1: Javaand C

CSE351, Winter 2021

Compiling and Running Java

1. Save your Java code ina . java file

2. To run the Java compiler:

" jJavac Foo.java

)

= The Java compiler converts Java into Java bytecodes
- Storedina .classfile
-fﬂ

3. To execute the program stored in the bytecodes,

these can be interpreted by the Java Virtual Machine
(JVM)

®= Running the virtual machine: java Foo

" loads Foo.class and interprets the bytecodes

28

YW UNIVERSITY of WASHINGTON

M10-L1: Javaand C

CSE351, Winter 2021

on VMWare. Yet another use of the word “virtual”!

a“ ” Note: The JVM is different than the CSE VM running
The JVM []

+ Java programs are usually run by a
Java virtual machine (JVM)

= JVMs interpret an intermediate language called Java
bytecode

" Many JVMs compile bytecode to native machine code
« Just-in-time (JIT) compilation -

« http://en.wikipedia.org/wiki/Just-in-time compilation

= Java is sometimes compiled ahead of time (AOT) like C

29

http://en.wikipedia.org/wiki/Just-in-time_compilation

YW UNIVERSITY of WASHINGTON M10-L1: Javaand C CSE351, Winter 2021

Virtual Machine Model

High-Level Language Program
(e.g., Java, C)
Bytecode compiler - Ahead-of-time
(e.qg., Jjavac Foo.]j ava) 6“" Comp”er
(58

_cimﬁile_time_ . _ Vlrtual Machine Language C) v
run time (e.g., Java bytecodes) N]
I
Virtual machine (interpreter) |
(e.g., java Foo) compller |

L N

Native Machine Language
(e.g., x86, ARM, MIPS)

30

YW UNIVERSITY of WASHINGTON M10-L1: Javaand C CSE351, Winter 2021

Java Bytecode

Holds pointer this

+ Like assembly code for JVM, Other arguments to method
but works on all JVMs R Other local variables
" Hardware-independent! N A/% l

+ Typed (unlike x86 assembly) w - — :

+ Strong JVM protections é il i il l

variable table

operand stack

constant
pool

31

YW UNIVERSITY of WASHINGTON

M10-L1: Javaand C

CSE351, Winter 2021

Holds pointer this

JVM Operand Stack

Bytecode:

Other arguments to method

Other local variables

| | 1
JVM: of1]2]3]a] n
"V [e table
. erand stac
(,iL'=|ntegen)
(_ W A
a’ = reference, ~ S
{ 7 CI 4
b’ for byte, - z
‘c’ for char,
‘d’ for double, ... constant
_ J/
pool
A 4
iload 1 // push 15t argument from table onto stack
iload 2 // push 2" argument from table onto stack
iadd // pop top 2 elements from stack, add together, and
=
// push result back onto stack

istore 3 // pop result and put it into third slot in table

pd

No registers or stack locations!

All operations use operand stack

Compiled
to (IA32) x86:

mov
mov
add
mov

$eax
Sedx

8 (%ebp) ,

12 (%ebp),
Tedx,
Teax,

Teax
-8 (%ebp)

32

YW UNIVERSITY of WASHINGTON M10-L1: Javaand C CSE351, Winter 2021

A Simple Java Method

Method java.lang.String getEmployeeName ()
0 aload 0 // "this" object is stored at 0 in the wvar table

1 getfield #5 <Field java.lang.String name>
// getfield instruction has a 3-byte encoding
// Pop an element from top of stack, retrieve its
// specified instance field and push it onto stack
// "name" field is the fifth field of the object

4 areturn // Returns object at top of stack

Byte number: O 1 4
aload 0 |getfield 00 05 areturn

As stored in the .classfile: |2A|B4|00|05|BRO

http://en.wikipedia.org/wiki/Java bytecode instruction listings

33

http://en.wikipedia.org/wiki/Java_bytecode_instruction_listings

YW UNIVERSITY of WASHINGTON M10-L1: Javaand C CSE351, Winter 2021

Class File Format

+ Every class in Java source code is compiled to its own class file

+ 10 sections in the Java class file structure:
= Magic number: OxCAFEBABE (legible hex from James Gosling — Java’s inventor)
= Version of class file format: The minor and major versions of the class file
= Constant pool: Set of constant values for the class
= Access flags: For example whether the class is abstract, static, final, etc.
® This class: The name of the current class
= Super class: The name of the super class
= Interfaces: Any interfaces in the class
" Fields: Any fields in the class
= Methods: Any methods in the class
= Attributes: Any attributes of the class (for example, name of source file, etc.)

+~ A .jar file collects together all of the class files needed for
the program, plus any additional resources (e.g., images)

34

YW UNIVERSITY of WASHINGTON M10-L1: Javaand C CSE351, Winter 2021

Compiled from Employee.java
Disassembled class Employee extends java.lang.Object {
public Employee (java.lang.String, int) ;
public java.lang.String getEmployeeName () ;

Java Bytecode | public int getEmployeeNumber () ;

Method Employee (java.lang.String, int)
0 aload O
1 invokespecial #3 <Method java.lang.Object ()>
4 aload 0
5 aload 1
6 putfield #5 <Field java.lang.String name>
9 aload 0
10 iload 2
11 putfield #4 <Field int idNumber>
14 aload 0
15 aload_1
> jJavap -c Employee 16 iload 2
17 invokespecial #6 <Method void
storeData (java.lang.String, int)>

> javac Employee.java

20 return

Method java.lang.String getEmployeeName ()

0 aload O

1 getfield #5 <Field java.lang.String name>
4 areturn

Method int getEmployeeNumber ()

0 aload O

1 getfield #4 <Field int idNumber>
4 ireturn

http://en.wikipedia.org/wiki/Java
bytecode instruction listings

Method void storeData(java.lang.String, int)
35

http://en.wikipedia.org/wiki/Java_bytecode_instruction_listings

YW UNIVERSITY of WASHINGTON M10-L1: Javaand C CSE351, Winter 2021

Other languages for JVMs

+ JVMs run on so many computers that compilers have been
built to translate many other languages to Java bytecode:
= Aspect), an aspect-oriented extension of Java
® ColdFusion, a scripting language compiled to Java
= Clojure, a functional Lisp dialect
= @Groovy, a scripting language
= JavaFX Script, a scripting language for web apps
= JRuby, an implementation of Ruby
= Jython, an implementation of Python
= Rhino, an implementation of JavaScript
= Scala, an object-oriented and functional programming language
= And many others, even including C!

+ Originally, JVMs were designed and built for Java (still the

major use) but JVMs are also viewed as a safe, GC'ed platform
36

YW UNIVERSITY of WASHINGTON M10-L1: Javaand C CSE351, Winter 2021

Microsoft’s C# and .NET Framework

«» C# has similar motivations as Java
®" Virtual machine is called the

) C# VB.NET J#
Common Language Runtime code code code
= Common Intermediate Language 1 l l
is the bytecode for C# and other
Compiler Compiler Compiler

languages in the .NET framework

=l

jemeeeae Commeon Language Infra structure -------

Hl e Wy

.NET compatible languages compile to a

Comman second platform-neutral language called
InLts-rr".-:d ate Commaon Intermediate Language (CIL).

anguage

.v
l w‘"\
The platform-specific Common Language

Ea%rgﬂﬂla%l Runtime (CLR) compiles CIL to machine-
e readable code that can be executed on the

current platform.

l

01001100101011
11010101100110

YW UNIVERSITY of WASHINGTON M10-L1: Javaand C CSE351, Winter 2021

We made it! @ @

C: Java: Memory & data

car *c = malloc(sizeof (car)); Car ¢ = new Car(); Integers & floats
c->miles = 100; c.setMiles (100) ; x86 assembly
c->gals = 17; c.setGals (17); Procedures & stacks
float mpg = get mpg(c); float mpg = Executables
free (c); c.getMPG () ; Arrays & structs
~ & Memory & caches
Assembly get_mpg: Processes
h % rb .
language: SO T Virtual memory
movq srsp, Srbp)
- Memory allocation
PopPq srbp Javavs. C
ret i
\ 4
Machine 0111010000011000 \/
de: 100011010000010000000010 A
COde: 1000100111000010)
110000011111101000011111 Windows 10 65X Yosemite —o=er
| [|
v 7
Computer

system:

38

