YA UNIVERSITY of WASHINGTON M9-L3: Memory Allocation Il CSE351, Winter 2021

Memory Allocation lli
CSE 351 Winter 2021

Instructor:
Mark Wyse

Teaching Assistants:
Kyrie Dowling
Catherine Guevara
lan Hsiao

Jim Limprasert
Armin Magness
Allie Pfleger

™ W

Cosmo Wang s —
Ronald Widjaja

https://xkcd.com/835/

https://xkcd.com/835/

YW UNIVERSITY of WASHINGTON M9-L3: Memory Allocation Il CSE351, Winter 2021

Administrivia

+» hw21 due Tonight!
+» hw22 due Friday

+ Study Guide 3 due Wed March 17
" Note: 1 page max for Task 1

A No Late Submissions

+~ Lab 5 due Wed March 17
No Late Submissions

YW UNIVERSITY of WASHINGTON M9-L3: Memory Allocation Il CSE351, Winter 2021

Boundary tags not
forget about them!

Freeing with LIFO Policy (Case 1) [Shownr but don't

Before free (@)

Root LI @)

» Insert the freed block at the root of the list

After

YW UNIVERSITY of WASHINGTON M9-L3: Memory Allocation Il CSE351, Winter 2021

Boundary tags not
forget about them!

Freeing with LIFO Policy (Case 2) [Shown' but don't

Before free (@) . (\ob" &
Root I o LI O
[oo
O -

« Splice following block out of list, coalesce both memory blocks,
and insert the new block at the root of the list e

After

YW UNIVERSITY of WASHINGTON M9-L3: Memory Allocation Il CSE351, Winter 2021

Boundary tags not
forget about them!

Freeing with LIFO Policy (Case 3) [Shown' but don'

Before N o free (@)
p%
Root fJJ i LI O
o .I

» Splice preceding block out of list, coalesce both memory
blocks, and insert the new block at the root of the list o

P
After 4 @J’
® " A

® 2\

Root # O

0 <

YW UNIVERSITY of WASHINGTON M9-L3: Memory Allocation Il CSE351, Winter 2021

Boundary tags not
forget about them!

Freeing with LIFO Policy (Case 4) [Shown' but don'

Before free (@)
o o

Root iI !I %o

O
» Splice preceding and following blocks out of list, coalesce all 3

memory blocks, and insert the new block at the root of the IEt
e

After d

Root .@_>

YW UNIVERSITY of WASHINGTON M9-L3: Memory Allocation Il CSE351, Winter 2021

Explicit List Summary

+» Comparison with implicit list:
= Block allocation is linear time in number of free blocks instead of all
blocks

- Much faster when most of the memory is full
= Slightly more complicated allocate and free since we need to splice
blocks in and out of the list ~ 2e%y danied Lis¥

= Some extra space for the links (2 extra pointers needed for each free
block)

Increases minimum block size, leading to more internal fragmentation

+» Most common use of explicit lists is in conjunction with &

different types of objects Ve~

1

segregated free lists A /@
= Keep multiple linked lists of different size classes, or possibly fo&s A@Q
Q\G

7

YW UNIVERSITY of WASHINGTON M9-L3: Memory Allocation Il CSE351, Winter 2021

Lab 5 Hints

+ Struct pointers can be used to access field values,
even if no struct instances have been created — just
reinterpreting the data in memory

+» Pay attention to boundary tag data

= Size value + 2 tag bits —when do these need to be updated
and do they have the correct values?

®" The examine heap function follows the implicit free list
searching algorithm — don’t take its output as “truth”

+» Learn to use and interpret the trace files for testing!!!

+ A special heap block marks the end of the heap
/\'A/\

YW UNIVERSITY of WASHINGTON M9-L3: Memory Allocation Il CSE351, Winter 2021

Allocation Policy Tradeoffs

» Data structure of blocks on lists

" |mplicit (free/allocated), explicit (free), segregated (many
free lists) — others possible!

» Placement policy: first-fit, next-fit, best-fit
" Throughput vs. amount of fragmentation
» When do we split free blocks?

®" How much internal fragmentation are we willing to tolerate?

+» When do we coalesce free blocks?
" Immediate coalescing: Everytime freeis called

= Deferred coalescing: Defer coalescing until needed

- e.g., when scanning free list for malloc or when external
fragmentation reaches some threshold

YW UNIVERSITY of WASHINGTON

M9-L3: Memory Allocation 11l

CSE351, Winter 2021

Non-testable /
More Info on Allocators { Reference Material]

+ D. Knuth, “The Art of Computer Programming”, 2"
edition, Addison Wesley, 1973

" The classic reference on dynamic storage allocation

» Wilson et al, “Dynamic Storage Allocation: A Survey
and Critical Review”, Proc. 1995 Int’| Workshop on

Memory Management, Kinross, Scotland, Sept, 1995.
= Comprehensive survey

= Available from CS:APP student site (csapp.cs.cmu.edu)

10

YA UNIVERSITY of WASHINGTON M9-L3: Memory Allocation Ill

Memory Allocation

*

Dynamic memory allocation

" |ntroduction and goals

= Allocation and deallocation (free)
" Fragmentation

*

Explicit allocation implementation
® Implicit free lists

= Explicit free lists (Lab 5)

= Segregated free lists

» Implicit de-/allocation: garbage collection
» Common memory-related bugs in C

CSE351, Winter 2021

11

YW UNIVERSITY of WASHINGTON M9-L3: Memory Allocation Il CSE351, Winter 2021

Reading Review | el
+ Terminology: o

/‘)
" Garbage collection: mark-and-sweep
" Memory-related issues in C

% Questions from the Reading?

12

YW UNIVERSITY of WASHINGTON M9-L3: Memory Allocation Il CSE351, Winter 2021

Wouldn’t it be nice...

+ If we never had to free memory?

+ Do you free objects in Java?

= Reminder: implicit allocator

13

YW UNIVERSITY of WASHINGTON M9-L3: Memory Allocation Il CSE351, Winter 2021

Garbage Collection (GC)

(Automatic Memory Management)

Garbage collection: automatic reclamation of heap-allocated
storage — application never explicitly frees memory

voz.C_l &on) _ \n 2 =P

int* p = (int*) malloc(128);

return; /* p block is now garbage! */
¥

Common in implementations of functional languages, scripting
languages, and modern object oriented languages:

= Lisp, Racket, Erlang, ML, Haskell, Scala, Java, C#, Perl, Ruby, Python, Lua,
JavaScript, Dart, Mathematica, MATLAB, many more...

Variants (“conservative” garbage collectors) exist for C and C++
" However, cannot necessarily collect all garbage

14

CSE351, Winter 2021

YA UNIVERSITY of WASHINGTON M9-L3: Memory Allocation Ill

Garbage Collection

+» How does the memory allocator know when memory
can be freed?

" |n general, we cannot know what is going to be used in the
future since it depends on conditionals

= But, we can tell that certain blocks cannot be used if they
are unreachable (via pointers in registers/stack/globals)

+» Memory allocator needs to know what is a pointer
and what is not — how can it do this?

= Sometimes with help from the compiler

15

YW UNIVERSITY of WASHINGTON M9-L3: Memory Allocation Il CSE351, Winter 2021

Memory as a Graph

+» We view memory as a directed graph
= Each allocated heap block is a node in the graph

= Each pointer is an edge in the graph
" Locations not in the heap that contain pointers into the heap are called

~-

N root nodes (e.q., registers, stack locations, global variables) «M’“
\ v‘\ \
\b& N < “,L\I‘."
s K| Rootnodes Q Q Q ¢
v
LRNS —
Heap nodes O reachable

not reachable

R (garbage)
¢
o O

! O

A node (block) is reachable if there is a path from any root to that node

Non-reachable nodes are garbage (cannot be needed by the application)
——

16

CSE351, Winter 2021

YA UNIVERSITY of WASHINGTON M9-L3: Memory Allocation Ill

Garbage Collection

» Dynamic memory allocator can free blocks if there are
no pointers to them

+» How can it know what is a pointer and what is not?

«» We’'ll make some assumptions about pointers:

= Memory aIIoca\tor can distinguish pointers from non-
pointers \ae

= All pointers point to the start of a block in the heap

= Application cannot hide pointers (we¥ ™" <)
(e.g., by coercing them to a 1ong, and then back again)

17

YW UNIVERSITY of WASHINGTON M9-L3: Memory Allocation Il CSE351, Winter 2021

Classical GC Algorithms

Mark-and-sweep collection (McCarthy, 1960)
= Does not move blocks (unless you also “compact”)
Reference counting (Collins, 1960)
= Does not move blocks (not discussed)

» Copying collection (Minsky, 1963)

= Moves blocks (not discussed)

Generational Collectors (Lieberman and Hewitt, 1983)
= Most allocations become garbage very soon, so
focus reclamation work on zones of memory recently allocated.

+ For more information:

= Jones, Hosking, and Moss, The Garbage Collection Handbook: The Art of
Automatic Memory Management, CRC Press, 2012.

= Jones and Lin, Garbage Collection: Algorithms for Automatic Dynamic
Memory, John Wiley & Sons, 1996.

18

YW UNIVERSITY of WASHINGTON M9-L3: Memory Allocation Il CSE351, Winter 2021

Mark and Sweep Collecting

+» Can build on top of malloc/free package

= Allocate using malloc until you “run out of space”

- When out of space:
= Use extra mark bit in the header of each block
= Mark: Start at roots and set mark bit on each reachable block
= Sweep: Scan all blocks and free blocks that are not marked

/¥ t /\r
Arrows are NOT
Before mark I_ I I I i I _I [free list pointers J

Aftermark |41 X

5“"% \f

After sweep | _|_| free

Mark bit set

19

YW UNIVERSITY of WASHINGTON M9-L3: Memory Allocation Il CSE351, Winter 2021

Assumptions For a Simple Implementation

Non-testable
Material

+ Application can use functions to allocate memory: {
" b=new (n) returns pointer, b, to new block with all locations cleared
" b[i] read location i of block b into register
" bl[i]=v write v into location i of block b

Each block will have a header word (accessedatb [-11)

P(c ced \'v W€

Functions used by the garbage collector:
" is ptr(p) determines whether p is a pointer to a block

" length (p) returns length of block pointed to by p, not including
header

" get roots () returnsalltheroots

20

YW UNIVERSITY of WASHINGTON M9-L3: Memory Allocation Il CSE351, Winter 2021

Non-testable
Material

+» Mark using depth-first traversal of the memory graph

Mark

—> onece P.Lf roo\' Nade

ptr mark (ptr p) { // p: some word in a heap block
if (!is ptr(p)) return; // do nothing if not pointer
if (markBitSet (p)) return; // check if already marked
setMarkBit (p) ; // set the mark bit
for (i=0; i<length(p); i++) // recursively call mark on

mark (p[i]) ; // all words in the block

return;

}

root
/\¥ 4//’~\\\T_
Before mark || _| | | | N
/\y 4///‘\\\T_
Aftermark || | | | ' |] Mark bit set

21

YW UNIVERSITY of WASHINGTON M9-L3: Memory Allocation Il CSE351, Winter 2021

{ Non-testable]
Sweep s one Materia

+~ Sweep using sizes in headers

ptr sweep (ptr p, ptr end) { // ptrs to start & end of heap
while (p < end) { // while not at end of heap
if (markBitSet (p)) // check if block is marked
clearMarkBit (p) ; // if so, reset mark bit
else if (allocateBitSet(p)) // if not marked, but allocated
free(p); // free the block
p += length(p); // adjust pointer to next block
}
}

/\v \
After mark || | |’ |] Mark bit set
> YV \y

After sweep | _|_| free | |° free | | B

22

YW UNIVERSITY of WASHINGTON M9-L3: Memory Allocation Il CSE351, Winter 2021

Non-testable]

Conservative Mark & Sweep in C [e

+» Would mark & sweep work in C?

2= is ptr determines if a word is a pointer by checking if it points to an
allocated block of memory

= Butin C, pointers can point into the middle of allocated blocks
(not so in Java)
Makes it tricky to find all allocated blocks in mark phase

ptr
header l

" There are ways to solve/avoid this problem in C, but the resulting
garbage collector is conservative:

Every reachable node correctly |dent|f|ed as reachable, but some unreachable
nodes might be incorrectly marked as reachable

" |nlJava, all pointers (i.e., references) point to the starting address of an
object structure — the start of an allocated block

23

YW UNIVERSITY of WASHINGTON

M9-L3: Memory Allocation 11l

CSE351, Winter 2021

Memory-Related Perils and Pitfalls in C

A)
B)
C)
D)
E)
F)
G)

H)

Program stop

Slide possible?
Dereferencing a non-pointer 29 Y
Freed block — access again 31 Y
Freed block — free again 30 Y
Memory leak — failing to free memory 32 N
No bounds checking 25 Y
Reading uninitialized memory 28 N
Referencing nonexistent variable 26 N
Wrong allocation size 27 Y

Fixes:

&val

free(x) after loop

Fix typo; free(x)
once, then free(y)

Free all elements;
save next->head

fgets()

calloc() or set y[i]
to0

Allocate val
dynamically

p = malloc(N *
sizeof(int*))

24

YW UNIVERSITY of WASHINGTON M9-L3: Memory Allocation Il CSE351, Winter 2021

Find That Bug! (Slide 25)

char s[8];
int 1i;

m /* reads "123456789" from stdin */

Error 6 Prog stop '7/ Fix: ¥5¢>‘5(>

Type: Possible?

25

YW UNIVERSITY of WASHINGTON M9-L3: Memory Allocation Il CSE351, Winter 2021

Find That Bug! (Slide 26)

int* foo () {
int val = 0;

return &val;

Error & Prog stop | Nfl Fix: a)l”“‘\"

Type: Possible?

26

YW UNIVERSITY of WASHINGTON M9-L3: Memory Allocation Il CSE351, Winter 2021

Find That Bug! (Slide 27)

int** p; ¥
& ="

p = (int*¥*) malloc@zeof (B}D

for (int 1 = 0; i < N; 1++) {
pli] = (int*)malloc(M * sizeof(int));

- N and M defined elsewhere (#define)

& oLV
< AT e Naﬂw
Error H Prog stop Fix: nk > f
Type: Possible? ‘\/

27

YW UNIVERSITY of WASHINGTON M9-L3: Memory Allocation Il CSE351, Winter 2021

Find That Bug! (Slide 28)

/* return y = Ax */
int* matvec (int** A, int* x) {
int* y = (int*)malloc(N*sizeof (int));

int 1, 3J; Uy Yoes PR WK

1
0; 7 < N; j++)

AT F s

) ﬁ(f) Y C») + I\E)05 7 ()
return vy;
: ’%7

« A is NXN matrix, x is N-sized vector (so product is vector of size N)

- N defined elsewhere (#define
iv.yf (- \)’(

V"‘\\“‘

@La\ “Mm (Q")m ’5

Error ? Prog stop N Fix: CoJ.ioLC)
Type: Possible?

28

YW UNIVERSITY of WASHINGTON M9-L3: Memory Allocation Il CSE351, Winter 2021

Find That Bug! (Slide 29)

% The classic scanf bug

" int scanf (const char *format)

int val;

scanf ("sd", wval);

sgﬂé

e P

o R

-
o& ~ R\‘(\S‘ A"y
G & P \Xgr\l“r
wb\ vo.b cjl‘b (/D’P
Error A Prog stop Fix:
Type: Possible? 7/ A Vol

29

YW UNIVERSITY of WASHINGTON

Find That Bug! (Slide 30)

M9-L3: Memory Allocation 11l

// manipulate x
free(x);

// manipulate y
free(x);

X = (int*)malloc(N * sizeof (int)),

y = (int*)malloc(M * sizeof (int));

Error Prog stop
Type: C Possible? \/

Fix:

free (%) onee

.FNL(*D - ‘\'1(» .

1

CSE351, Winter 2021

30

YA UNIVERSITY of WASHINGTON M9-L3: Memory Allocation Ill

Find That Bug! (Slide 31)

X = (int*)malloc(N * sizeof (int)
// manipulate x
free (x);
y = (int*)malloc(M * sizeof (int)
for (1=0; 1i<M; 1i++)
yli] = x[1]++;

) g

) g

N ¢
N N
k) . \\o"
QQ'}C((‘ g‘_o"
&
o ;«Y‘ \}}
Error Prog stop Fix: fece () afor logg
Type: 6 Possible? R

CSE351, Winter 2021

31

YW UNIVERSITY of WASHINGTON M9-L3: Memory Allocation Il CSE351, Winter 2021

Find That Bug! (Slide 32)

typedef struct L {

int val;
struct L *next;
} list;
void foo () {
list *head = (list *) malloc(sizeof (list));

head->val = 0;
head->next = NULL;
// create and manipulate the rest of the 1list

free (head) ;

return; e
} §?$°
2>
gt X
N O‘J\\!‘)/ wlb o~ U\"
. . Cree vy demnt o f Lugh.
Error Prog stop Fix: [¢)\
D . V‘ gavl puxt = wes e
Type: Possible?

YL?‘ V\‘\
32

YW UNIVERSITY of WASHINGTON M9-L3: Memory Allocation Il CSE351, Winter 2021

Non-testable
Material

Dealing With Memory Bugs

+» Conventional debugger (gdb)
" Good for finding bad pointer dereferences
*" Hard to detect the other memory bugs

+» Debuggingmalloc (UToronto CSRImalloc)
®= Wrapper around conventionalmalloc

= Detects memory bugs atmalloc and free boundaries
- Memory overwrites that corrupt heap structures
- Some instances of freeing blocks multiple times
- Memory leaks
= Cannot detect all memory bugs
- Overwrites into the middle of allocated blocks
- Freeing block twice that has been reallocated in the interim
- Referencing freed blocks

33

YW UNIVERSITY of WASHINGTON M9-L3: Memory Allocation Il CSE351, Winter 2021

Non-testable

Dealing With Memory Bugs (cont.) e

|

+» Some malloc implementations contain checking
code

" Linux glibc malloc: setenv MALLOC CHECK 2
" FreeBSD: setenv MALLOC OPTIONS AJR

% Binary translator: valgrind (Linux), Purify
= Powerful debugging and analysis technique
= Rewrites text section of executable object file
" Can detect all errors as debuggingmalloc

® Can also check each individual reference at runtime
- Bad pointers
« Overwriting

- Referencing outside of allocated block

34

YW UNIVERSITY of WASHINGTON M9-L3: Memory Allocation Il CSE351, Winter 2021

What about Java or ML or Python or ...?

{ Non-testable]

Material

« In memory-safe languages, most of these bugs are

4

impossible

= Cannot perform arbitrary pointer manipulation
= Cannot get around the type system

= Array bounds checking, null pointer checking

= Automatic memory management

But one of the bugs we saw earlier is possible. Which
one?

35

YW UNIVERSITY of WASHINGTON M9-L3: Memory Allocation Il CSE351, Winter 2021

Memory Leaks with GC

- Not because of forgotten free — we have GC!
» Unneeded “leftover” roots keep objects reachable

» Sometimes nullifying a variable is not needed for correctness
but is for performance

» Example: Don’t leave big data structures you’re done with in a
static field

Root nodes Q Q Q
Heap nodes O reachable
O not reachable
Q (garbage)

O

36

