YW UNIVERSITY of WASHINGTON Mo-L1: Memory Allocation | CSE351, Winter 2021

WHEN WILL WE FORGET?
° BASED oN)S (ENSUs (V!
Memory Allocation | NATONPL PORCLATON FROTECTNS
CSE 351 Winter 2021 i epli gy

Br THIS | THE MPJORITY OF PMERICANS
YEAR: | WILL BE TOOYONG TO REMEMBER:

Guest Lecturer: 2006 | FETRV OF RE JEL) RELEPSE.
Jim Limprasert 2017 | HE FIRST APRE MAONTOSH
2018 | New (oxe
08 | CHAULEMGER
Instructor: 2020 | CHERNOBYL
Mark Wyse 2 ~

2022 | THE REAGAN PRESIDENGY
2075 | THE BeERUN WAL

Teaching Assistants: 2024 | HAERTHE

: . 2025 | THE SOVIET UNION
Kyrie Dowling 20% | THE LA RIOTS
Catherine Guevara 2027 | LORENA BOBRITT

. 228 | THE FORREST GUMP RELERSE

lan Hsiao 2029 | THE RWANDAN GENOCIDE

. 238 | ATIME BEFORE FACERODK,
Allie Pfleger 2039 | VHYs Z lovee 7 s
Cosmo Wang 2040 | HURRICANE. KATRINA

e 2041 | THE PLANET Pwmo
Ronald Widjaja 2042 | THE FIRST {BHONE
Adapted from q047 | ANYTHING BEYBARRASEING

https://xkcd.com/1093/ YOU DO ToDAY

https://xkcd.com/627/

YW UNIVERSITY of WASHINGTON Mo-L1: Memory Allocation | CSE351, Winter 2021

Administrivia
% hw20 due Friday (3/5), hw21 due Monday (3/8)

+ Lab 4 due Friday (3/5), Lab 5 released yesterday!

YA UNIVERSITY of WASHINGTON Mo-L1: Memory Allocation | CSE351, Winter 2021

Roadmap

C: Java: Memory & data

car *c = malloc(sizeof (car)); Car ¢ = new Car(); Integers & floats
c->miles = 100; c.setMiles (100) ; x86 assembly
c->gals = 17; c.setGals (17); Procedures & stacks
float mpg = get mpg(c); float mpg = Executables
free(c); c.getMPG () ; Arrays & structs
~ & Memory & caches
Assembly c;;et_mpc_l;1) Processes
. pushq srbp .
language: movq 4rep, Srbp Virtual memory
- Memory allocation
popgq srbp Java vs. C
ret I
\ 4
Machine 0111010000011000
de: 100011010000010000000010
code: 1000100111000010
110000011111101000011111
Computer

system:

YW UNIVERSITY of WASHINGTON Mo-L1: Memory Allocation | CSE351, Winter 2021

Reading Review

+» Terminology:
= Dynamically-allocated data: malloc, free

= Allocators: implicit vs. explicit allocators, heap blocks,
implicit vs. explicit free lists

®" Heap fragmentation: internal vs. external

% Questions from the Reading?

YW UNIVERSITY of WASHINGTON Mo-L1: Memory Allocation | CSE351, Winter 2021

Multiple Ways to Store Program Data

+ Static global data — TN

71nt
" Fixed size at compile-time

= Entire lifetime of the program V°?dtfoo (int n) {
(loaded from executable) int tmp;

array[1024];

_= int local arrayl([n];

= Portion is read-only a
(e.g., string literals) L e =
(int*)malloc (n*sizeof (int)) ;
+ Stack-allocated data) £

" Local/temporary variables

« Can be dynamically sized (in some versions of C)

= Known lifetime (deallocated on return)

<+ Dynamic (heap) data
= Size known only at runtime (i.e., based on user-input)
= Lifetime known only at runtime (long-lived data structures)

CSE351, Winter 2021

YA UNIVERSITY of WASHINGTON Mo-L1: Memory Allocation |

Memory Allocation

Dynamic memory allocation

*

" |Introduction and goals
= Allocation and deallocation (free)
" Fragmentation

Explicit allocation implementation

*

" Implicit free lists
= Explicit free lists (Lab 5)
= Segregated free lists

+ Implicit deallocation: garbage collection
» Common memory-related bugs in C

YW UNIVERSITY of WASHINGTON Mo-L1: Memory Allocation | CSE351, Winter 2021

Dynamic Memory Allocation

+» Programmers use dynamic memory allocators to

acquire virtual memory at run time Userstack‘
" For data structures whose size f
(or lifetime) is known only at runtime Heap (viamalloc)
= Manage the heap of a process’ Uninitialized data (. bss)
virtual memorv: Initialized data (. data)
y: Program text (. text)

+» Types of allocators

= Explicit allocator:/ programmer allocates and frees space
- Example: mallocand freeinC

= Implicit allocator: programmer only allocates space (no free)

- Example: garbage collection in Java, Caml, and Lisp
L—’) \\{\W”: A [/} - new A()} 7

YW UNIVERSITY of WASHINGTON Mo-L1: Memory Allocation | CSE351, Winter 2021

Dynamic Memory Allocation
blo k¢
+ Allocator/organizes heap as a collection of variable-
sized blocks, which are either allocated or free

= Allocator requests pages in the heap region; virtual memory
hardware and OS kernel allocate these pages to the process

= Application objects are typically smaller than pages, so the
allocator manages blocks within pages

- (Larger objects handled too; User stack

ignored here) ‘t ‘
1’\1»’) «— Top of heap
Heap (viamalloc) (brk ptr)

j—, KJ///////’//&\’ M Uninitialized data (.bss)

Initialized data (. data)
Program text (. text)

YW UNIVERSITY of WASHINGTON Mo-L1: Memory Allocation | CSE351, Winter 2021

Allocating Memory in C

unsignsd inbeqe!
+ Needto ¥include [<stdlib.h>’
+ vold* malloc (size t size) L ebpras f’k 4 ped

/J

= Allocates a continuous block of size bytes of uninitialized memory

= Returns a pointer to the beginning of the allocated block; NULL
indicates a failed request

- Typically aligned to an 8-byte (x86) or 16-byte (x86-64) boundary 7777 "

Returns NULL if allocation failed (also sets errno) or size==

Different blocks not necessarily adjacent walloy (1)
/? v s rodlog (20)

+» Good practices:
" ptr = (1nt*) malloc(n*sizeof (int));
sizeof makes code more portable

- void* is implicitly cast into any pointer type; explicit typecast will help you
catch coding errors when pointer types don’t match

YW UNIVERSITY of WASHINGTON Mo-L1: Memory Allocation | CSE351, Winter 2021

Allocating Memory in C

«+ Needto #include <stdlib.h>

W void* malloc (size t size)
= Allocates a continuous block of size bytes of uninitialized memory
= Returns a pointer to the beginning of the allocated block; NULL
indicates a failed request
- Typically aligned to an 8-byte (x86) or 16-byte (x86-64) boundary
Returns NULL if allocation failed (also sets errno) or size==

= Different blocks not necessarily adjacent . oL
. ”} I_WV\ $l 144 JJ eo"}/‘

+ Related functions: n 7
)Q void* calloc(size_t nitems, size t size)
- “Zeros out” allocated block ﬁ
void* realloc(void* ptr, size t size) \ZEGD:'
- Changes the size of a previously allocated block (if possible)
" void* sbrk(intptr t increment)

Used internally by allocators to grow or shrink the heap
10

YW UNIVERSITY of WASHINGTON Mo-L1: Memory Allocation | CSE351, Winter 2021

Freeing Memory in C

+ Needto #include <Stdll J
. : ‘S\w*— ‘“(J Ly
» wvoid free (void* p) f

= Releases whole block pointed to by p to the pool of available memory

= Pointer p must be the address originally returned by m/c/realloc

(i.e., beginning of the block), otherwise system exception raised

" Don’t call free on a block that has already been released fru(r)
T

= No action occurs if you call free (NULL)

11

e
Memory Allocation Example in 7
1:3 me2 E%@

void foo(int n, int m) {

int i, *p;
(} p = (int*) malloc(n*sizeof (int)); /* allocate block of nints */

YA UNIVERSITY of WASHINGTON Mo-L1: Memory Allocation |

:

if (p == NULL) { /* check for allocation error */
perror ("malloc") ;
exit (0) ;
}
for (i=0; i<n; 1i++) /* initialize int array */
pli] = i;
p /* add space for m ints to end of p block */
<Z> p = (int*) realloc(p, (n+m) *sizeof (int)) ;
if (p == NULL) { /* check for allocation error */
perror ("realloc");
exit (0) ;
}
for (i=n; 1 < n+m; 1i++) /* initialize new spaces */
pli] = i;
for (i=0; i<n+m; 1++) /* print new array */
printf ("$d\n", pl[i]);
free (p); /* freep */

N
v"/

12

YW UNIVERSITY of WASHINGTON Mo-L1: Memory Allocation | CSE351, Winter 2021

=1 word = 8 bytes

Notation

+» We will draw memory divided into words
" Each word is 64 bits = 8 bytes — §4-b1+ <&6—6Y- ;ng‘"

= Allocations will be in sizes that are a multiple of boxes
(i.e., multiples of 8 bytes)

®" Book and old videos still use 4-byte word
- Holdover from 32-bit version of textbook @

22 B 29 B

L ~—

\ v J] ; ,_J

Allocated block Free block
(4 words) (3 words) Free word

Allocated word

13

YW UNIVERSITY of WASHINGTON Mo-L1: Memory Allocation | CSE351, Winter 2021

Allocation Example
pl = malloc(32)
p2 = malloc (40)

p3 = malloc (48)

free (p2)

r4 = malloc (1

= 8-byte word
X) fs
J J v
—— S

)

()\lew-\l olnfwk 0n %e r'mw fo[ftg/

14

YW UNIVERSITY of WASHINGTON Mo-L1: Memory Allocation | CSE351, Winter 2021

Implementation Interface

+ Applications

= Canissue arbitrary sequence of malloc and free requests

- Mp_/ub[(-

bgp

" Must never access memory not currently allocated

" Must never free memory not currently allocated

« Also must only use free with previously malloc’ed blocks

« Allocators

Can’t control number or size of allocated blocks
Must respond immediatelytomalloc
Must allocate blocks from free memory (ng gvular)

Must align blocks so they satisfy all alignment requirements
Can’t move the allocated blocks

15

YW UNIVERSITY of WASHINGTON Mo-L1: Memory Allocation | CSE351, Winter 2021

Performance Goals

+» @oals: Given some sequence of malloc and free
requests Ry, R4, ..., Ry, ..., R,;_1, maximize throughput
and peak memory utilization
" These goals are often conflicting

1) Throughput
" Number of completed requests per unit time

= Example: A —> 10,000 ey

- If 5,000 malloc callsand 5,000 free calls completed in 10 seconds,
then throughput is 1,000 operations/second

16

YW UNIVERSITY of WASHINGTON Mo-L1: Memory Allocation | CSE351, Winter 2021

Performance Goals

+ Definition: Aggregate payload P;
" malloc (p) resultsin a block with a payload of p bytes

= After request R; has completed, the aggregate payload P,
is the sum of currently allocated payloads

+ Definition: Current heap size H,,

= Assume Hj, is monotonically non-decreasing
- Allocator can increase size of heap using sbrk

gt pgbd
2) Peak Memory Utilization e W“’ 512

= Defined as U;, = (ma}(x P;)/H,, after k+1 requests
<

" Goal: maximize utilization for a sequence of requests

" Why is this hard? And what happens to throughput?
Ls pade fob v ha“g*

17

YW UNIVERSITY of WASHINGTON M9-L1: Memory Allocation | CSE351, Winter 2021

Fragmentation

+» Poor memory utilization is caused by fragmentation

= Sections of memory are not used to store anything useful,
but cannot satisfy allocation requests

= Two types: internal and external

+ Recall: Fragmentation in structs

" Internal fragmentation was wasted space inside of the struct
(between fields) due to alignment

= External fragmentation was wasted space between struct
instances (e.qg., in an array) due to alignment

+» Now referring to wasted space in the heap inside or
between allocated blocks

18

YW UNIVERSITY of WASHINGTON Mo-L1: Memory Allocation | CSE351, Winter 2021

Internal Fragmentation
e s = ol s
« For a given block; internal fragmentation occurs if

payload is smaller than the block ralloe (21
block / B
= dign to &
Internal — — Internal
fragmentation — | > payload T fragmentation

A
+» Causes: '\ K

7@? Padding for alignment purposesﬁ S

Overhead of maintaining heap data structures (inside block,
outside payload)

= Explicit policy decisions (e.g., return a big block to satisfy a
small request)

+» Easy to measure because only depends on past
requests

19

YW UNIVERSITY of WASHINGTON Mo-L1: Memory Allocation | CSE351, Winter 2021

= 8-byte word

N

] —2

« For the heap, external fragmentation occurs when
allocation/free pattern leaves “holes” between blocks

"= Thatis, the aggregate payload is non-continuous

External Fragmentation

= Can cause situations where there is enough aggregate heap memory to
satisfy request, but no single free block is large enough

pl = malloc(32)

p2 = malloc (40)

p3 = malloc(48)

free (p2) % 6
) i _-— —
P4 = malloc(48) Oh no! (What would happen now?)

« Don’t know what future requests will be

= Difficult to impossible to know if past placements will become

problematic
20

YA UNIVERSITY of WASHINGTON Mo-L1: Memory Allocation |

CSE351, Winter 2021

Polling Question

+» Which of the following statements is FALSE?
= Vote in Ed Lessons

A. Temporary arrays should not be allocated on the
Heap > gn the sl \/a

B. malloc returns an address of 3/block that is
filled with garbage

C. Peak memory utilization is a measure botnlg L)
. . re o\
internal and external fragmentation A

3
An allocation failure will cause your progrartﬂo
stop Lo et NULL
E. We're lost...

21

YW UNIVERSITY of WASHINGTON M9-L1: Memory Allocation | CSE351, Winter 2021

Implementation Issues

« How do we know how much memory to free given
just a pointer? W,/é_
+» How do we keep track of the free blocks?
+» How do we pick a block to use for allocation (when
many might fit)?

+» What do we do with the extra space when allocating
a structure that is smaller than the free block it is
placed in?

+ How do we reinsert a freed block into the heap?

22

YW UNIVERSITY of WASHINGTON Mo-L1: Memory Allocation | CSE351, Winter 2021

= 8-byte word (free)

Knowing How Much to Free

= 8-byte word (allocated)

« Standard method

= Keep the length of a block in the word preceding the data
- This word is often called the header field or header

= Requires an extra word for every allocated block

r0
PO = malloc (32) 40
block size data

free (p0)

23

YW UNIVERSITY of WASHINGTON M9-L1: Memory Allocation | CSE351, Winter 2021

= 8-byte word (free)

Keeping Track of Free Blocks

= 8-byte word (allocated)

mplicit free list using length — links all blocks using math
= No actual pointers, and must check each block if allocated or free

- — -y -——
’f’ N\ ,f \\ ”4 5\
Vo A »

40 32 48 16

/}
ﬁExplicitfree list among only the free blocks, using pointers

/\

10| 32 48 16

3) Segregated free list

= Different free lists for different size “classes”

4) Blocks sorted by size

= Can use a balanced binary tree (e.g., red-black tree) with pointers within

each free block, and the length used as a key
24

YW UNIVERSITY of WASHINGTON Mo-L1: Memory Allocation | CSE351, Winter 2021

e o o e.g., with 8-byte alignment,

|mp|ICIt Free LIStS possible values for size:
00001000 = 8 bytes
00010000 = 16 bytes

+» For each block we need: size, is-allocated? | 00011000 =24 bytes

= Could store using two words but wa‘steful l, P
i e Glouk s ol e
= Standard trick |~ e e low sinilicont l:+s s’ =p

= |f blocks are aligned, some low-order bits of size are always 0

= Use lowest bit as an allocated/free flag (fine as long as aligning to K>1)
" When reading size, must remember to mask out this bit!

8 bytes
N —
- N
Format of size al a=1: allocated block If % is first word (header):
allocated and a=0: free block +
free blocks: x = size | a;
payload size: block size (in bytes)

payload: application data
optional (allocated blocks only) size = x & ?]_;
padding Obll -y

25

YW UNIVERSITY of WASHINGTON Mo-L1: Memory Allocation | CSE351, Winter 2021

Header Questions

+» How many “flags” can we fit in our header if our
allocator uses 16-byte alighment? 0b__ .. _0000

L> MU N‘s ho i&, a muh‘f‘pu 0‘\ |4 <
4 g

+ If we placed a new “flag” in the second least
significant bit, write out a C expression that will

extract this new flag from header Ob__ .._\]|_
@ it w0 LoB

(he:I/u £2)>> (WM»I)M

26

