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Administrivia

❖ hw18 due Tonight!

❖ hw 19 due Monday (3/1)

❖ Study Guide 2 due Monday (3/1)

❖ hw20 due Friday (3/5)

❖ Lab 4 due Friday (3/5)
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Reading Review

❖ Terminology:

▪ Address translation:  page hit, page fault

▪ Translation Lookaside Buffer (TLB):  TLB Hit, TLB Miss

❖ Questions from the Reading?
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Virtual Memory (VM)

❖ Overview and motivation

❖ VM as a tool for caching

❖ Address translation

❖ VM as a tool for memory management

❖ VM as a tool for memory protection
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VM for Managing Multiple Processes

❖ Key abstraction: each process has its own virtual address space
▪ It can view memory as a simple linear array

❖ With virtual memory, this simple linear virtual address space 
need not be contiguous in physical memory
▪ Process needs to store data in another VP? Just map it to any PP!
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Simplifying Linking and Loading

❖ Linking 
▪ Each program has similar virtual 

address space

▪ Code, Data, and Heap always 
start at the same addresses

❖ Loading 
▪ execve allocates virtual pages 

for .text and .data sections 
& creates PTEs marked as invalid

▪ The .text and .data sections 
are copied, page by page, on 
demand by the virtual memory 
system
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VM for Protection and Sharing

❖ The mapping of VPs to PPs provides a simple mechanism to 
protect memory and to share memory between processes
▪ Sharing: map virtual pages in separate address spaces to the same 

physical page (here: PP 6)

▪ Protection: process can’t access physical pages to which none of its 
virtual pages are mapped (here:  Process 2 can’t access PP 2)
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Memory Protection Within Process

❖ VM implements read/write/execute permissions

▪ Extend page table entries with permission bits

▪ MMU checks these permission bits on every memory access
• If violated, raises exception and OS sends SIGSEGV signal to process

(segmentation fault)
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Memory Review Question

❖ What should the permission bits be for pages from 
the following sections of virtual memory?
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Address Translation

❖ Page Hits and Misses

❖ Accelerating Translation with the TLB
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Address Translation:  Page Hit
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1) Processor sends virtual address to MMU (memory management unit)

2-3)  MMU fetches PTE from page table in cache/memory
(Uses PTBR to find beginning of page table for current process)

4) MMU sends physical address to cache/memory requesting data

5) Cache/memory sends data to processor
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PA = Physical Address Data = Contents of memory stored at VA originally requested by CPU 
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Address Translation:  Page Fault
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1) Processor sends virtual address to MMU 

2-3) MMU fetches PTE from page table in cache/memory

4) Valid bit is zero, so MMU triggers page fault exception

5) Handler identifies victim (and, if dirty, pages it out to disk)

6) Handler pages in new page and updates PTE in memory

7) Handler returns to original process, restarting faulting instruction
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Hmm… Translation Sounds Slow

❖ The MMU accesses memory twice: once to get the 
PTE for translation, and then again for the actual 
memory request

▪ The PTEs may be cached in L1 like any other memory word

• But they may be evicted by other data references

• And a hit in the L1 cache still requires 1-3 cycles

❖ What can we do to make this faster?

▪ Solution:  add another cache!  🎉
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Speeding up Translation with a TLB

❖ Translation Lookaside Buffer (TLB):

▪ Small hardware cache in MMU
• Split VPN into TLB Tag and TLB Index based on # of sets in TLB

▪ Maps virtual page numbers to physical page numbers

▪ Stores page table entries for a small number of pages
• Modern Intel processors have 128 or 256 entries in TLB

▪ Much faster than a page table lookup in cache/memory
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TLB Hit

❖ A TLB hit eliminates a memory access!
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TLB Miss

❖ A TLB miss incurs an additional memory access (the PTE)
▪ Fortunately, TLB misses are rare
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Fetching Data on a Memory Read

1) Check TLB

▪ Input:  VPN,  Output:  PPN

▪ TLB Hit: Fetch translation, return PPN

▪ TLB Miss: Check page table (in memory)
• Page Table Hit: Load page table entry into TLB

• Page Fault: Fetch page from disk to memory, update 
corresponding page table entry, then load entry into TLB

2) Check cache

▪ Input:  physical address,  Output:  data

▪ Cache Hit: Return data value to processor

▪ Cache Miss: Fetch data value from memory, store it in 
cache, return it to processor
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Address Translation

Virtual Address
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Address Manipulation
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Context Switching Revisited

❖ What needs to happen when the CPU switches 
processes?

▪ Registers:
• Save state of old process, load state of new process

• Including the Page Table Base Register (PTBR)

▪ Memory:
• Nothing to do!  Pages for processes already exist in memory/disk and 

protected from each other

▪ TLB:
• Invalidate all entries in TLB – mapping is for old process’ VAs 

▪ Cache:
• Can leave alone because storing based on PAs – good for shared data
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Summary of Address Translation Symbols

❖ Basic Parameters
▪ N = 2𝑛 Number of addresses in virtual address space
▪ M = 2𝑚 Number of addresses in physical address space
▪ P = 2𝑝 Page size (bytes)

❖ Components of the virtual address (VA)
▪ VPO Virtual page offset 
▪ VPN Virtual page number
▪ TLBI TLB index
▪ TLBT TLB tag

❖ Components of the physical address (PA)
▪ PPO Physical page offset (same as VPO)
▪ PPN Physical page number
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Simple Memory System Example (small)

❖ Addressing

▪ 14-bit virtual addresses

▪ 12-bit physical address

▪ Page size = 64 bytes
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Simple Memory System:  Page Table

❖ Only showing first 16 entries (out of _____)

▪ Note:  showing 2 hex digits for PPN even though only 6 bits

▪ Note: other management bits not shown, but part of PTE
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VPN PPN Valid

0 28 1

1 – 0

2 33 1

3 02 1

4 – 0

5 16 1

6 – 0

7 – 0

VPN PPN Valid

8 13 1

9 17 1

A 09 1

B – 0

C – 0

D 2D 1

E – 0

F 0D 1
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Simple Memory System:  TLB

❖ 16 entries total

❖ 4-way set associative
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13 12 11 10 9 8 7 6 5 4 3 2 1 0

virtual page offsetvirtual page number

TLB indexTLB tag

0–021340A10D030–073

0–030–060–080–022

0–0A0–040–0212D031

102070–0010D090–030

ValidPPNTagValidPPNTagValidPPNTagValidPPNTagSet

Why does the 
TLB ignore the 
page offset?
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Simple Memory System:  Cache

❖ Direct-mapped with K = 4 B, C/K = 16

❖ Physically addressed
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11 10 9 8 7 6 5 4 3 2 1 0

physical page offsetphysical page number

cache offsetcache indexcache tag

Note: It is just 
coincidence that the 

PPN is the same width 
as the cache Tag

Index Tag Valid B0 B1 B2 B3

0 19 1 99 11 23 11

1 15 0 – – – –

2 1B 1 00 02 04 08

3 36 0 – – – –

4 32 1 43 6D 8F 09

5 0D 1 36 72 F0 1D

6 31 0 – – – –

7 16 1 11 C2 DF 03

Index Tag Valid B0 B1 B2 B3

8 24 1 3A 00 51 89

9 2D 0 – – – –

A 2D 1 93 15 DA 3B

B 0B 0 – – – –

C 12 0 – – – –

D 16 1 04 96 34 15

E 13 1 83 77 1B D3

F 14 0 – – – –
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Current State of Memory System

Cache:

TLB:
Page table (partial):

Index Tag V B0 B1 B2 B3

0 19 1 99 11 23 11

1 15 0 – – – –

2 1B 1 00 02 04 08

3 36 0 – – – –

4 32 1 43 6D 8F 09

5 0D 1 36 72 F0 1D

6 31 0 – – – –

7 16 1 11 C2 DF 03

Index Tag V B0 B1 B2 B3

8 24 1 3A 00 51 89

9 2D 0 – – – –

A 2D 1 93 15 DA 3B

B 0B 0 – – – –

C 12 0 – – – –

D 16 1 04 96 34 15

E 13 1 83 77 1B D3

F 14 0 – – – –

Set Tag PPN V Tag PPN V Tag PPN V Tag PPN V

0 03 – 0 09 0D 1 00 – 0 07 02 1

1 03 2D 1 02 – 0 04 – 0 0A – 0

2 02 – 0 08 – 0 06 – 0 03 – 0

3 07 – 0 03 0D 1 0A 34 1 02 – 0

VPN PPN V
0 28 1
1 – 0
2 33 1
3 02 1
4 – 0
5 16 1
6 – 0
7 – 0

VPN PPN V
8 13 1
9 17 1
A 09 1
B – 0
C – 0
D 2D 1
E – 0
F 0D 1
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Memory Request Example #1

❖ Virtual Address:  0x03D4

❖ Physical Address:  
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TLBITLBT
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12

0

11

0

10

1

9

1

8

1

7

1

6

0

5

1

4

0

3

1

2

0

1

0

0

VPOVPN

11 10 9 8 7 6 5 4 3 2 1 0

PPOPPN

COCICT

VPN ______ TLBT _____ TLBI _____ TLB Hit? ___ Page Fault? ___ PPN _____

CT ______ CI _____ CO _____ Cache Hit? ___ Data (byte) _______

Note: It is just 
coincidence that the 

PPN is the same width 
as the cache Tag



CSE351, Winter 2021M8-L3:  Virtual Memory III

Memory Request Example #2

❖ Virtual Address:  0x038F

❖ Physical Address:  
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TLBITLBT

0
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0
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0
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1

9
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8
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7
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0

5

0

4

1

3

1
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1

1

1

0

VPOVPN

11 10 9 8 7 6 5 4 3 2 1 0

PPOPPN

COCICT

VPN ______ TLBT _____ TLBI _____ TLB Hit? ___ Page Fault? ___ PPN _____

CT ______ CI _____ CO _____ Cache Hit? ___ Data (byte) _______

Note: It is just 
coincidence that the 

PPN is the same width 
as the cache Tag
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Memory Request Example #3

❖ Virtual Address:  0x0020

❖ Physical Address:  
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TLBITLBT

0
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0

12

0

11

0

10

0
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0
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0

6
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5

0

4

0

3
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2
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11 10 9 8 7 6 5 4 3 2 1 0

PPOPPN

COCICT

VPN ______ TLBT _____ TLBI _____ TLB Hit? ___ Page Fault? ___ PPN _____

CT ______ CI _____ CO _____ Cache Hit? ___ Data (byte) _______

Note: It is just 
coincidence that the 

PPN is the same width 
as the cache Tag
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Memory Request Example #4

❖ Virtual Address:  0x036B

❖ Physical Address:  
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TLBITLBT

0

13

0
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0
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0

4
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11 10 9 8 7 6 5 4 3 2 1 0

PPOPPN

COCICT

VPN ______ TLBT _____ TLBI _____ TLB Hit? ___ Page Fault? ___ PPN _____

CT ______ CI _____ CO _____ Cache Hit? ___ Data (byte) _______

Note: It is just 
coincidence that the 

PPN is the same width 
as the cache Tag
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Memory Overview
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Main memory
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Page Table Reality

❖ Just one issue… the numbers don’t work out for the 
story so far!

❖ The problem is the page table for each process:

▪ Suppose 64-bit VAs, 8 KiB pages, 8 GiB physical memory

▪ How many page table entries is that? 

▪ About how long is each PTE?

▪ Moral: Cannot use this naïve implementation of the 
virtual→physical page mapping – it’s way too big

32

This is extra 
(non-testable) 

material
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A Solution:  Multi-level Page Tables

33

Page table 
base register

(PTBR)

VPN 1

0p-1n-1

VPOVPN 2 ... VPN k

PPN

0p-1m-1

PPOPPN

Virtual Address

Physical Address

... ...

Level 1
page table

Level 2
page table

Level k
page table

TLB

PTEVPN →

PTEVPN →

PTEVPN →

This is called a page walk

This is extra 
(non-testable) 

material
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Multi-level Page Tables

❖ A tree of depth 𝑘 where each node at depth 𝑖 has up to 2𝑗

children if part 𝑖 of the VPN has 𝑗 bits

❖ Hardware for multi-level page tables inherently more 
complicated
▪ But it’s a necessary complexity – 1-level does not fit

❖ Why it works: Most subtrees are not used at all, so they are 
never created and definitely aren’t in physical memory
▪ Parts created can be evicted from cache/memory when not being used

▪ Each node can have a size of ~1-100KB

❖ But now for a 𝑘-level page table, a TLB miss requires 𝑘 + 1
cache/memory accesses
▪ Fine so long as TLB misses are rare – motivates larger TLBs
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This is extra 
(non-testable) 

material
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Practice VM Question

❖ Our system has the following properties
▪ 1 MiB of physical address space

▪ 4 GiB of virtual address space

▪ 32 KiB page size

▪ 4-entry fully associative TLB with LRU replacement

a) Fill in the following blanks:
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________ Entries in a page table ________ Minimum bit-width of 
PTBR

________ TLBT bits ________ Max # of valid entries 
in a page table
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Practice VM Question

❖ One process uses a page-aligned square matrix mat[] of 32-
bit integers in the code shown below:

#define MAT_SIZE = 2048

for(int i = 0; i < MAT_SIZE; i++)

mat[i*(MAT_SIZE+1)] = i;

b) What is the largest stride (in bytes) between successive 
memory accesses (in the VA space)?
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Practice VM Question

❖ One process uses a page-aligned square matrix mat[] of 32-
bit integers in the code shown below:

#define MAT_SIZE = 2048

for(int i = 0; i < MAT_SIZE; i++)

mat[i*(MAT_SIZE+1)] = i;

c) Assuming all of mat[] starts on disk, what are the following 
hit rates for the execution of the for-loop?
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________ TLB Hit Rate ________ Page Table Hit Rate
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Virtual Memory Summary

❖ Programmer’s view of virtual memory

▪ Each process has its own private linear address space

▪ Cannot be corrupted by other processes

❖ System view of virtual memory

▪ Uses memory efficiently by caching virtual memory pages
• Efficient only because of locality

▪ Simplifies memory management and sharing

▪ Simplifies protection by providing permissions checking
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Memory System Summary

❖ Memory Caches (L1/L2/L3)
▪ Purely a speed-up technique

▪ Behavior invisible to application programmer and (mostly) OS

▪ Implemented totally in hardware

❖ Virtual Memory
▪ Supports many OS-related functions

• Process creation, task switching, protection

▪ Operating System (software)

• Allocates/shares physical memory among processes

• Maintains high-level tables tracking memory type, source, sharing

• Handles exceptions, fills in hardware-defined mapping tables

▪ Hardware

• Translates virtual addresses via mapping tables, enforcing permissions

• Accelerates mapping via translation cache (TLB)
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Quick Review

❖ What do Page Tables map?

❖ Where are Page Tables located?

❖ How many Page Tables are there?

❖ Can your program tell if a page fault has occurred?

❖ What is thrashing?

❖ True / False:  Virtual Addresses that are contiguous will always be 
contiguous in physical memory

❖ TLB stands for _____________________ and stores ________________
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