
CSE351, Winter 2021M8-L3: Virtual Memory III

Virtual Memory III
CSE 351 Winter 2021

Instructor:

Mark Wyse

Teaching Assistants:

Kyrie Dowling

Catherine Guevara

Ian Hsiao

Jim Limprasert

Armin Magness

Allie Pfleger

Cosmo Wang

Ronald Widjaja https://xkcd.com/648/

https://xkcd.com/648/

CSE351, Winter 2021M8-L3: Virtual Memory III

Administrivia

❖ hw18 due Tonight!

❖ hw 19 due Monday (3/1)

❖ Study Guide 2 due Monday (3/1)

❖ hw20 due Friday (3/5)

❖ Lab 4 due Friday (3/5)

2

CSE351, Winter 2021M8-L3: Virtual Memory III

Reading Review

❖ Terminology:

▪ Address translation: page hit, page fault

▪ Translation Lookaside Buffer (TLB): TLB Hit, TLB Miss

❖ Questions from the Reading?

3

CSE351, Winter 2021M8-L3: Virtual Memory III

Virtual Memory (VM)

❖ Overview and motivation

❖ VM as a tool for caching

❖ Address translation

❖ VM as a tool for memory management

❖ VM as a tool for memory protection

4

CSE351, Winter 2021M8-L3: Virtual Memory III

VM for Managing Multiple Processes

❖ Key abstraction: each process has its own virtual address space
▪ It can view memory as a simple linear array

❖ With virtual memory, this simple linear virtual address space
need not be contiguous in physical memory
▪ Process needs to store data in another VP? Just map it to any PP!

5

Virtual
Address

Space for
Process 1:

Physical
Address
Space
(DRAM)

0

N-1

(e.g., read-only
library code)

Virtual
Address

Space for
Process 2:

VP 1
VP 2
...

0

N-1

VP 1
VP 2
...

PP 2

PP 6

PP 8

...

0

M-1

Address
translation

CSE351, Winter 2021M8-L3: Virtual Memory III

Simplifying Linking and Loading

❖ Linking
▪ Each program has similar virtual

address space

▪ Code, Data, and Heap always
start at the same addresses

❖ Loading
▪ execve allocates virtual pages

for .text and .data sections
& creates PTEs marked as invalid

▪ The .text and .data sections
are copied, page by page, on
demand by the virtual memory
system

6

Kernel virtual memory

Memory-mapped region for
shared libraries

Run-time heap
(created by malloc)

User stack
(created at runtime)

Unused
0

%rsp

(stack
pointer)

Memory
invisible to
user code

brk

0x400000

Read/write segment
(.data, .bss)

Read-only segment
(.init, .text, .rodata)

Loaded
from the
executable
file

CSE351, Winter 2021M8-L3: Virtual Memory III

VM for Protection and Sharing

❖ The mapping of VPs to PPs provides a simple mechanism to
protect memory and to share memory between processes
▪ Sharing: map virtual pages in separate address spaces to the same

physical page (here: PP 6)

▪ Protection: process can’t access physical pages to which none of its
virtual pages are mapped (here: Process 2 can’t access PP 2)

7

Virtual
Address

Space for
Process 1:

Physical
Address
Space
(DRAM)

0

N-1

(e.g., read-only
library code)

Virtual
Address

Space for
Process 2:

VP 1
VP 2
...

0

N-1

VP 1
VP 2
...

PP 2

PP 6

PP 8

...

0

M-1

Address
translation

CSE351, Winter 2021M8-L3: Virtual Memory III

Memory Protection Within Process

❖ VM implements read/write/execute permissions

▪ Extend page table entries with permission bits

▪ MMU checks these permission bits on every memory access
• If violated, raises exception and OS sends SIGSEGV signal to process

(segmentation fault)

8

•
•
•

Physical
Address Space

PP 2

PP 4

PP 6

PP 8
PP 9

PP 11

Process i: PPNWRITE EXEC

PP 6No No

PP 4No Yes

PP 2Yes No

READ

Yes

Yes

Yes

VP 0:

VP 1:

VP 2:

Yes

Yes

Yes

Valid

Process j: WRITE EXEC

PP 9Yes No

PP 6No No

PP 11Yes No

READ

Yes

Yes

Yes

VP 0:

VP 1:

VP 2:

Yes

Yes

Yes

Valid PPN

CSE351, Winter 2021M8-L3: Virtual Memory III

Memory Review Question

❖ What should the permission bits be for pages from
the following sections of virtual memory?

9

Section Read Write Execute

Stack

Heap

Static Data

Literals

Instructions

CSE351, Winter 2021M8-L3: Virtual Memory III

Address Translation

❖ Page Hits and Misses

❖ Accelerating Translation with the TLB

10

CSE351, Winter 2021M8-L3: Virtual Memory III

Address Translation: Page Hit

11

1) Processor sends virtual address to MMU (memory management unit)

2-3) MMU fetches PTE from page table in cache/memory
(Uses PTBR to find beginning of page table for current process)

4) MMU sends physical address to cache/memory requesting data

5) Cache/memory sends data to processor

MMU Cache/
MemoryPA

Data

CPU
VA

CPU Chip
PTEA

PTE
1

2

3

4

5

VA = Virtual Address PTEA = Page Table Entry Address PTE= Page Table Entry
PA = Physical Address Data = Contents of memory stored at VA originally requested by CPU

CSE351, Winter 2021M8-L3: Virtual Memory III

Address Translation: Page Fault

12

1) Processor sends virtual address to MMU

2-3) MMU fetches PTE from page table in cache/memory

4) Valid bit is zero, so MMU triggers page fault exception

5) Handler identifies victim (and, if dirty, pages it out to disk)

6) Handler pages in new page and updates PTE in memory

7) Handler returns to original process, restarting faulting instruction

MMU Cache/
Memory

CPU
VA

CPU Chip
PTEA

PTE

1

2

3

4

5

Disk

Page fault handler

Victim page

New page

Exception

6

7

CSE351, Winter 2021M8-L3: Virtual Memory III

Hmm… Translation Sounds Slow

❖ The MMU accesses memory twice: once to get the
PTE for translation, and then again for the actual
memory request

▪ The PTEs may be cached in L1 like any other memory word

• But they may be evicted by other data references

• And a hit in the L1 cache still requires 1-3 cycles

❖ What can we do to make this faster?

▪ Solution: add another cache! 🎉

13

CSE351, Winter 2021M8-L3: Virtual Memory III

Speeding up Translation with a TLB

❖ Translation Lookaside Buffer (TLB):

▪ Small hardware cache in MMU
• Split VPN into TLB Tag and TLB Index based on # of sets in TLB

▪ Maps virtual page numbers to physical page numbers

▪ Stores page table entries for a small number of pages
• Modern Intel processors have 128 or 256 entries in TLB

▪ Much faster than a page table lookup in cache/memory

14

Virtual Page Number Page offset

TLBT TLBI

TLB

PTETLBT

PTE

PTE

PTE

Set

0

1

V

TLBTV

TLBTV

V TLBT

CSE351, Winter 2021M8-L3: Virtual Memory III

TLB Hit

❖ A TLB hit eliminates a memory access!

15

MMU
Cache/

Memory

PA

Data

CPU
VA

CPU Chip

PTE

1

2

4

5

TLB

VPN 3

TLB

PTEVPN →

PTEVPN →

PTEVPN →

CSE351, Winter 2021M8-L3: Virtual Memory III

TLB Miss

❖ A TLB miss incurs an additional memory access (the PTE)
▪ Fortunately, TLB misses are rare

16

MMU
Cache/

MemoryPA

Data

CPU
VA

CPU Chip

PTE

1

2

5

6

TLB

VPN

4

PTEA

3

TLB

PTEVPN →

PTEVPN →

PTEVPN →

CSE351, Winter 2021M8-L3: Virtual Memory III

Fetching Data on a Memory Read

1) Check TLB

▪ Input: VPN, Output: PPN

▪ TLB Hit: Fetch translation, return PPN

▪ TLB Miss: Check page table (in memory)
• Page Table Hit: Load page table entry into TLB

• Page Fault: Fetch page from disk to memory, update
corresponding page table entry, then load entry into TLB

2) Check cache

▪ Input: physical address, Output: data

▪ Cache Hit: Return data value to processor

▪ Cache Miss: Fetch data value from memory, store it in
cache, return it to processor

17

CSE351, Winter 2021M8-L3: Virtual Memory III

Address Translation

Virtual Address

TLB Lookup

Check the
Page Table

Update
TLB

Page Fault
(OS loads page)

Protection
Check

Physical
Address

TLB Miss TLB Hit

Page not
in Mem

Access
Denied

Access
Permitted

Protection
Fault

SIGSEGV

Page
in Mem

Check cacheFind in Disk Find in Mem
HitMiss

CSE351, Winter 2021M8-L3: Virtual Memory III

Address Manipulation

19

Page offset

Page Offset

Virtual Page Number

TLB Index

request from CPU:

𝑚-bit physical
address:

split to access TLB:

(on TLB miss) access PT:

𝑛-bit virtual address

Page offsetPhysical Page Number

Block offsetCache Index

TLB Tag

Cache Tagsplit to access cache:

TRANSLATION

CSE351, Winter 2021M8-L3: Virtual Memory III

Context Switching Revisited

❖ What needs to happen when the CPU switches
processes?

▪ Registers:
• Save state of old process, load state of new process

• Including the Page Table Base Register (PTBR)

▪ Memory:
• Nothing to do! Pages for processes already exist in memory/disk and

protected from each other

▪ TLB:
• Invalidate all entries in TLB – mapping is for old process’ VAs

▪ Cache:
• Can leave alone because storing based on PAs – good for shared data

20

CSE351, Winter 2021M8-L3: Virtual Memory III

Summary of Address Translation Symbols

❖ Basic Parameters
▪ N = 2𝑛 Number of addresses in virtual address space
▪ M = 2𝑚 Number of addresses in physical address space
▪ P = 2𝑝 Page size (bytes)

❖ Components of the virtual address (VA)
▪ VPO Virtual page offset
▪ VPN Virtual page number
▪ TLBI TLB index
▪ TLBT TLB tag

❖ Components of the physical address (PA)
▪ PPO Physical page offset (same as VPO)
▪ PPN Physical page number

21

CSE351, Winter 2021M8-L3: Virtual Memory III

Simple Memory System Example (small)

❖ Addressing

▪ 14-bit virtual addresses

▪ 12-bit physical address

▪ Page size = 64 bytes

22

13 12 11 10 9 8 7 6 5 4 3 2 1 0

VPOVPN

Virtual Page Number Virtual Page Offset

11 10 9 8 7 6 5 4 3 2 1 0

PPOPPN

Physical Page Number Physical Page Offset

CSE351, Winter 2021M8-L3: Virtual Memory III

Simple Memory System: Page Table

❖ Only showing first 16 entries (out of _____)

▪ Note: showing 2 hex digits for PPN even though only 6 bits

▪ Note: other management bits not shown, but part of PTE

23

VPN PPN Valid

0 28 1

1 – 0

2 33 1

3 02 1

4 – 0

5 16 1

6 – 0

7 – 0

VPN PPN Valid

8 13 1

9 17 1

A 09 1

B – 0

C – 0

D 2D 1

E – 0

F 0D 1

CSE351, Winter 2021M8-L3: Virtual Memory III

Simple Memory System: TLB

❖ 16 entries total

❖ 4-way set associative

24

13 12 11 10 9 8 7 6 5 4 3 2 1 0

virtual page offsetvirtual page number

TLB indexTLB tag

0–021340A10D030–073

0–030–060–080–022

0–0A0–040–0212D031

102070–0010D090–030

ValidPPNTagValidPPNTagValidPPNTagValidPPNTagSet

Why does the
TLB ignore the
page offset?

CSE351, Winter 2021M8-L3: Virtual Memory III

Simple Memory System: Cache

❖ Direct-mapped with K = 4 B, C/K = 16

❖ Physically addressed

25

11 10 9 8 7 6 5 4 3 2 1 0

physical page offsetphysical page number

cache offsetcache indexcache tag

Note: It is just
coincidence that the

PPN is the same width
as the cache Tag

Index Tag Valid B0 B1 B2 B3

0 19 1 99 11 23 11

1 15 0 – – – –

2 1B 1 00 02 04 08

3 36 0 – – – –

4 32 1 43 6D 8F 09

5 0D 1 36 72 F0 1D

6 31 0 – – – –

7 16 1 11 C2 DF 03

Index Tag Valid B0 B1 B2 B3

8 24 1 3A 00 51 89

9 2D 0 – – – –

A 2D 1 93 15 DA 3B

B 0B 0 – – – –

C 12 0 – – – –

D 16 1 04 96 34 15

E 13 1 83 77 1B D3

F 14 0 – – – –

CSE351, Winter 2021M8-L3: Virtual Memory III

Current State of Memory System

Cache:

TLB:
Page table (partial):

Index Tag V B0 B1 B2 B3

0 19 1 99 11 23 11

1 15 0 – – – –

2 1B 1 00 02 04 08

3 36 0 – – – –

4 32 1 43 6D 8F 09

5 0D 1 36 72 F0 1D

6 31 0 – – – –

7 16 1 11 C2 DF 03

Index Tag V B0 B1 B2 B3

8 24 1 3A 00 51 89

9 2D 0 – – – –

A 2D 1 93 15 DA 3B

B 0B 0 – – – –

C 12 0 – – – –

D 16 1 04 96 34 15

E 13 1 83 77 1B D3

F 14 0 – – – –

Set Tag PPN V Tag PPN V Tag PPN V Tag PPN V

0 03 – 0 09 0D 1 00 – 0 07 02 1

1 03 2D 1 02 – 0 04 – 0 0A – 0

2 02 – 0 08 – 0 06 – 0 03 – 0

3 07 – 0 03 0D 1 0A 34 1 02 – 0

VPN PPN V
0 28 1
1 – 0
2 33 1
3 02 1
4 – 0
5 16 1
6 – 0
7 – 0

VPN PPN V
8 13 1
9 17 1
A 09 1
B – 0
C – 0
D 2D 1
E – 0
F 0D 1

CSE351, Winter 2021M8-L3: Virtual Memory III

Memory Request Example #1

❖ Virtual Address: 0x03D4

❖ Physical Address:

27

TLBITLBT

0

13

0

12

0

11

0

10

1

9

1

8

1

7

1

6

0

5

1

4

0

3

1

2

0

1

0

0

VPOVPN

11 10 9 8 7 6 5 4 3 2 1 0

PPOPPN

COCICT

VPN ______ TLBT _____ TLBI _____ TLB Hit? ___ Page Fault? ___ PPN _____

CT ______ CI _____ CO _____ Cache Hit? ___ Data (byte) _______

Note: It is just
coincidence that the

PPN is the same width
as the cache Tag

CSE351, Winter 2021M8-L3: Virtual Memory III

Memory Request Example #2

❖ Virtual Address: 0x038F

❖ Physical Address:

28

TLBITLBT

0

13

0

12

0

11

0

10

1

9

1

8

1

7

0

6

0

5

0

4

1

3

1

2

1

1

1

0

VPOVPN

11 10 9 8 7 6 5 4 3 2 1 0

PPOPPN

COCICT

VPN ______ TLBT _____ TLBI _____ TLB Hit? ___ Page Fault? ___ PPN _____

CT ______ CI _____ CO _____ Cache Hit? ___ Data (byte) _______

Note: It is just
coincidence that the

PPN is the same width
as the cache Tag

CSE351, Winter 2021M8-L3: Virtual Memory III

Memory Request Example #3

❖ Virtual Address: 0x0020

❖ Physical Address:

29

TLBITLBT

0

13

0

12

0

11

0

10

0

9

0

8

0

7

0

6

1

5

0

4

0

3

0

2

0

1

0

0

VPOVPN

11 10 9 8 7 6 5 4 3 2 1 0

PPOPPN

COCICT

VPN ______ TLBT _____ TLBI _____ TLB Hit? ___ Page Fault? ___ PPN _____

CT ______ CI _____ CO _____ Cache Hit? ___ Data (byte) _______

Note: It is just
coincidence that the

PPN is the same width
as the cache Tag

CSE351, Winter 2021M8-L3: Virtual Memory III

Memory Request Example #4

❖ Virtual Address: 0x036B

❖ Physical Address:

30

TLBITLBT

0

13

0

12

0

11

0

10

1

9

1

8

0

7

1

6

1

5

0

4

1

3

0

2

1

1

1

0

VPOVPN

11 10 9 8 7 6 5 4 3 2 1 0

PPOPPN

COCICT

VPN ______ TLBT _____ TLBI _____ TLB Hit? ___ Page Fault? ___ PPN _____

CT ______ CI _____ CO _____ Cache Hit? ___ Data (byte) _______

Note: It is just
coincidence that the

PPN is the same width
as the cache Tag

CSE351, Winter 2021M8-L3: Virtual Memory III

Memory Overview

31

Disk

Main memory
(DRAM)

CacheCPU

Page

Page
Line

Block

requested 32-bits

❖ movl 0x8043ab, %edi

TLB

MMU

CSE351, Winter 2021M8-L3: Virtual Memory III

Page Table Reality

❖ Just one issue… the numbers don’t work out for the
story so far!

❖ The problem is the page table for each process:

▪ Suppose 64-bit VAs, 8 KiB pages, 8 GiB physical memory

▪ How many page table entries is that?

▪ About how long is each PTE?

▪ Moral: Cannot use this naïve implementation of the
virtual→physical page mapping – it’s way too big

32

This is extra
(non-testable)

material

CSE351, Winter 2021M8-L3: Virtual Memory III

A Solution: Multi-level Page Tables

33

Page table
base register

(PTBR)

VPN 1

0p-1n-1

VPOVPN 2 ... VPN k

PPN

0p-1m-1

PPOPPN

Virtual Address

Physical Address

... ...

Level 1
page table

Level 2
page table

Level k
page table

TLB

PTEVPN →

PTEVPN →

PTEVPN →

This is called a page walk

This is extra
(non-testable)

material

CSE351, Winter 2021M8-L3: Virtual Memory III

Multi-level Page Tables

❖ A tree of depth 𝑘 where each node at depth 𝑖 has up to 2𝑗

children if part 𝑖 of the VPN has 𝑗 bits

❖ Hardware for multi-level page tables inherently more
complicated
▪ But it’s a necessary complexity – 1-level does not fit

❖ Why it works: Most subtrees are not used at all, so they are
never created and definitely aren’t in physical memory
▪ Parts created can be evicted from cache/memory when not being used

▪ Each node can have a size of ~1-100KB

❖ But now for a 𝑘-level page table, a TLB miss requires 𝑘 + 1
cache/memory accesses
▪ Fine so long as TLB misses are rare – motivates larger TLBs

34

This is extra
(non-testable)

material

CSE351, Winter 2021M8-L3: Virtual Memory III

Practice VM Question

❖ Our system has the following properties
▪ 1 MiB of physical address space

▪ 4 GiB of virtual address space

▪ 32 KiB page size

▪ 4-entry fully associative TLB with LRU replacement

a) Fill in the following blanks:

35

________ Entries in a page table ________ Minimum bit-width of
PTBR

________ TLBT bits ________ Max # of valid entries
in a page table

CSE351, Winter 2021M8-L3: Virtual Memory III

Practice VM Question

❖ One process uses a page-aligned square matrix mat[] of 32-
bit integers in the code shown below:

#define MAT_SIZE = 2048

for(int i = 0; i < MAT_SIZE; i++)

mat[i*(MAT_SIZE+1)] = i;

b) What is the largest stride (in bytes) between successive
memory accesses (in the VA space)?

36

CSE351, Winter 2021M8-L3: Virtual Memory III

Practice VM Question

❖ One process uses a page-aligned square matrix mat[] of 32-
bit integers in the code shown below:

#define MAT_SIZE = 2048

for(int i = 0; i < MAT_SIZE; i++)

mat[i*(MAT_SIZE+1)] = i;

c) Assuming all of mat[] starts on disk, what are the following
hit rates for the execution of the for-loop?

37

________ TLB Hit Rate ________ Page Table Hit Rate

CSE351, Winter 2021M8-L3: Virtual Memory III

Virtual Memory Summary

❖ Programmer’s view of virtual memory

▪ Each process has its own private linear address space

▪ Cannot be corrupted by other processes

❖ System view of virtual memory

▪ Uses memory efficiently by caching virtual memory pages
• Efficient only because of locality

▪ Simplifies memory management and sharing

▪ Simplifies protection by providing permissions checking

38

CSE351, Winter 2021M8-L3: Virtual Memory III

Memory System Summary

❖ Memory Caches (L1/L2/L3)
▪ Purely a speed-up technique

▪ Behavior invisible to application programmer and (mostly) OS

▪ Implemented totally in hardware

❖ Virtual Memory
▪ Supports many OS-related functions

• Process creation, task switching, protection

▪ Operating System (software)

• Allocates/shares physical memory among processes

• Maintains high-level tables tracking memory type, source, sharing

• Handles exceptions, fills in hardware-defined mapping tables

▪ Hardware

• Translates virtual addresses via mapping tables, enforcing permissions

• Accelerates mapping via translation cache (TLB)

39

CSE351, Winter 2021M8-L3: Virtual Memory III

Quick Review

❖ What do Page Tables map?

❖ Where are Page Tables located?

❖ How many Page Tables are there?

❖ Can your program tell if a page fault has occurred?

❖ What is thrashing?

❖ True / False: Virtual Addresses that are contiguous will always be
contiguous in physical memory

❖ TLB stands for _____________________ and stores ________________

40

