
CSE351, Winter 2021M7-L2: Processes II

Processes II
CSE 351 Winter 2021

Instructor:

Mark Wyse

Teaching Assistants:

Kyrie Dowling

Catherine Guevara

Ian Hsiao

Jim Limprasert

Armin Magness

Allie Pfleger

Cosmo Wang

Ronald Widjaja
https://xkcd.com/1495/

https://xkcd.com/1495/

CSE351, Winter 2021M7-L2: Processes II

Administrivia

❖ hw17 due tonight!

❖ hw18 due Friday, hw19 due Monday

❖ Study Guide 2 due Monday 3/1

❖ Lab 4 due Friday 3/5

2

CSE351, Winter 2021M7-L2: Processes II

Reading Review

❖ Terminology:

▪ exec*(), exit(), wait(), waitpid()

▪ init/systemd, reaping, zombie processes

▪ Virtual memory: virtual vs. physical addresses and address
space, swap space

❖ Questions from the Reading?

3

CSE351, Winter 2021M7-L2: Processes II

Processes

❖ Processes and context switching

❖ Creating new processes
▪ fork() and exec*()

❖ Ending a process
▪ exit(), wait(), waitpid()

▪ Zombies

4

CSE351, Winter 2021M7-L2: Processes II

Process 2

“Memory”

Stack

Heap

Code
Data

“CPU”

Registers

Creating New Processes & Programs

5

Chrome.exe

Process 1

“Memory”

Stack

Heap

Code
Data

“CPU”

Registers

fork()

exec*()

CSE351, Winter 2021M7-L2: Processes II

Creating New Processes & Programs

❖ fork-exec model (Linux):
▪ fork() creates a copy of the current process

▪ exec*() replaces the current process’ code and address
space with the code for a different program
• Family: execv, execl, execve, execle, execvp, execlp

▪ fork() and execve() are system calls

❖ Other system calls for process management:
▪ getpid()

▪ exit()

▪ wait(), waitpid()

6

CSE351, Winter 2021M7-L2: Processes II

fork: Creating New Processes

❖ pid_t fork(void)

▪ Creates a new “child” process that is identical to the calling “parent”
process, including all state (memory, registers, etc.)

▪ Returns 0 to the child process

▪ Returns child’s process ID (PID) to the parent process

❖ Child is almost identical to parent:
▪ Child gets an identical

(but separate) copy of the
parent’s virtual address
space

▪ Child has a different PID
than the parent

❖ fork is unique (and often confusing) because it is called once
but returns “twice”

7

pid_t pid = fork();

if (pid == 0) {

printf("hello from child\n");

} else {

printf("hello from parent\n");

}

CSE351, Winter 2021M7-L2: Processes II

Understanding fork()

8

Process X (parent; PID X)

pid_t fork_ret = fork();

if (fork_ret == 0) {

printf("hello from child\n");

} else {

printf("hello from parent\n");

}

Process Y (child; PID Y)

pid_t fork_ret = fork();

if (fork_ret == 0) {

printf("hello from child\n");

} else {

printf("hello from parent\n");

}

CSE351, Winter 2021M7-L2: Processes II

Understanding fork()

9

pid_t fork_ret = fork();

if (fork_ret == 0) {

printf("hello from child\n");

} else {

printf("hello from parent\n");

}

pid_t fork_ret = fork();

if (fork_ret == 0) {

printf("hello from child\n");

} else {

printf("hello from parent\n");

}

fork_ret = Y

Process X (parent; PID X)

pid_t fork_ret = fork();

if (fork_ret == 0) {

printf("hello from child\n");

} else {

printf("hello from parent\n");

}

Process Y (child; PID Y)

pid_t fork_ret = fork();

if (fork_ret == 0) {

printf("hello from child\n");

} else {

printf("hello from parent\n");

}

fork_ret = 0

CSE351, Winter 2021M7-L2: Processes II

Understanding fork()

10

pid_t fork_ret = fork();

if (fork_ret == 0) {

printf("hello from child\n");

} else {

printf("hello from parent\n");

}

pid_t fork_ret = fork();

if (fork_ret == 0) {

printf("hello from child\n");

} else {

printf("hello from parent\n");

}

Process X (parent; PID X)

pid_t fork_ret = fork();

if (fork_ret == 0) {

printf("hello from child\n");

} else {

printf("hello from parent\n");

}

Process Y (child; PID Y)

pid_t fork_ret = fork();

if (fork_ret == 0) {

printf("hello from child\n");

} else {

printf("hello from parent\n");

}

hello from parent hello from child

Which one appears first?

fork_ret = Y fork_ret = 0

CSE351, Winter 2021M7-L2: Processes II

Fork Example

❖ Both processes continue/start execution after fork
▪ Child starts at instruction after the call to fork (storing into pid)

❖ Can’t predict execution order of parent and child

❖ Both processes start with x = 1
▪ Subsequent changes to x are independent

❖ Shared open files: stdout is the same in both parent and child

12

void fork1() {

int x = 1;

pid_t fork_ret = fork();

if (fork_ret == 0)

printf("Child has x = %d\n", ++x);

else

printf("Parent has x = %d\n", --x);

printf("Bye from process %d with x = %d\n", getpid(), x);

}

CSE351, Winter 2021M7-L2: Processes II

Modeling fork with Process Graphs

❖ A process graph is a useful tool for capturing the partial
ordering of statements in a concurrent program
▪ Each vertex is the execution of a statement

▪ a→ b means a happens before b

▪ Edges can be labeled with current value of variables

▪ printf vertices can be labeled with output

▪ Each graph begins with a vertex with no inedges

❖ Any topological sort of the graph corresponds to a feasible
total ordering
▪ Total ordering of vertices where all edges point from left to right

13

CSE351, Winter 2021M7-L2: Processes II

Fork Example: Possible Output

14

void fork1() {

int x = 1;

pid_t fork_ret = fork();

if (fork_ret == 0)

printf("Child has x = %d\n", ++x);

else

printf("Parent has x = %d\n", --x);

printf("Bye from process %d with x = %d\n", getpid(), x);

}

printf--x printffork

Child

Bye

x=1

printf printf++x

Bye

Parent

x=2

x=0

CSE351, Winter 2021M7-L2: Processes II

Polling Question

❖ Is the following sequence of outputs possible?

▪ Vote in Ed Lessons

15

void nestedfork() {

printf("L0\n");

if (fork() == 0) {

printf("L1\n");

if (fork() == 0) {

printf("L2\n");

}

}

printf("Bye\n");

}

Seq 1:
L0

Bye

L1

L2

Bye

Bye

A. No
B. Yes
C. We’re lost…

CSE351, Winter 2021M7-L2: Processes II

Fork-Exec

❖ fork-exec model:
▪ fork() creates a copy of the current process

▪ exec*() replaces the current process’ code and address
space with the code for a different program
• Whole family of exec calls – see exec(3) and execve(2)

16

// Example arguments: path="/usr/bin/ls",

// argv[0]="/usr/bin/ls", argv[1]="-ahl", argv[2]=NULL

void fork_exec(char *path, char *argv[]) {

pid_t fork_ret = fork();

if (fork_ret != 0) {

printf("Parent: created a child %d\n", fork_ret);

} else {

printf("Child: about to exec a new program\n");

execv(path, argv);

}

printf("This line printed by parent only!\n");

}

Note: the return values of fork and
exec* should be checked for errors

CSE351, Winter 2021M7-L2: Processes II

Exec-ing a new program

17

Stack

Code: /usr/bin/bash

Data

Heap

Stack

Code: /usr/bin/bash

Data

Heap

Stack

Code: /usr/bin/bash

Data

Heap

Stack

Code: /usr/bin/ls

Data

fork()

exec*()

Very high-level diagram of what
happens when you run the
command “ls” in a Linux shell:
❖ This is the loading part of CALL!

parent child child

CSE351, Winter 2021M7-L2: Processes II

Processes

❖ Processes and context switching

❖ Creating new processes
▪ fork() and exec*()

❖ Ending a process
▪ exit(), wait(), waitpid()

▪ Zombies

18

CSE351, Winter 2021M7-L2: Processes II

exit: Ending a process

❖ void exit(int status)

▪ Explicitly exits a process
• Status code: 0 is used for a normal exit, nonzero for abnormal exit

❖ The return statement from main() also ends a
process in C

▪ The return value is the status code

19

CSE351, Winter 2021M7-L2: Processes II

Zombies

❖ A terminated process still consumes system resources

▪ Various tables maintained by OS

▪ Called a “zombie” (a living corpse, half alive and half dead)

❖ Reaping is performed by parent on terminated child

▪ Parent is given exit status information and kernel then
deletes zombie child process

❖ What if parent doesn’t reap?

▪ If any parent terminates without reaping a child, then the
orphaned child will be reaped by init process (pid of 1)
• Note: on recent Linux systems, init has been renamed systemd

▪ In long-running processes (e.g., shells, servers) we need
explicit reaping

20

CSE351, Winter 2021M7-L2: Processes II

wait: Synchronizing with Children

❖ int wait(int* child_status)

▪ Suspends current process (i.e., the parent) until one of its
children terminates

▪ Return value is the PID of the child process that terminated
• On successful return, the child process is reaped

▪ If child_status != NULL, then the *child_status
value indicates why the child process terminated
• Special macros for interpreting this status – see man wait(2)

❖ Note: If parent process has multiple children, wait
will return when any of the children terminates
▪ waitpid can be used to wait on a specific child process

21

CSE351, Winter 2021M7-L2: Processes II

wait: Synchronizing with Children

22

void fork_wait() {

int child_status;

if (fork() == 0) {

printf("HC: hello from child\n");

exit(0);

} else {

printf("HP: hello from parent\n");

wait(&child_status);

printf("CT: child has terminated\n");

}

printf("Bye\n");

}

printf wait printffork

printf

exit

HP

HC

CT

Bye

forks.c

Feasible output:

HC

HP

CT

Bye

Infeasible output:

HP

CT

Bye

HC

CSE351, Winter 2021M7-L2: Processes II

linux> ./forks 7 &

[1] 6639

Running Parent, PID = 6639

Terminating Child, PID = 6640

linux> ps

PID TTY TIME CMD

6585 ttyp9 00:00:00 tcsh

6639 ttyp9 00:00:03 forks

6640 ttyp9 00:00:00 forks <defunct>

6641 ttyp9 00:00:00 ps

linux> kill 6639

[1] Terminated

linux> ps

PID TTY TIME CMD

6585 ttyp9 00:00:00 tcsh

6642 ttyp9 00:00:00 ps

Example: Zombie

❖ ps shows child process as
“defunct”

❖ Killing parent allows child to be
reaped by init

23

void fork7() {

if (fork() == 0) {

/* Child */

printf("Terminating Child, PID = %d\n",

getpid());

exit(0);

} else {

printf("Running Parent, PID = %d\n",

getpid());

while (1); /* Infinite loop */

}

} forks.c

CSE351, Winter 2021M7-L2: Processes II

linux> ./forks 8

Terminating Parent, PID = 6675

Running Child, PID = 6676

linux> ps

PID TTY TIME CMD

6585 ttyp9 00:00:00 tcsh

6676 ttyp9 00:00:06 forks

6677 ttyp9 00:00:00 ps

linux> kill 6676

linux> ps

PID TTY TIME CMD

6585 ttyp9 00:00:00 tcsh

6678 ttyp9 00:00:00 ps

Example:

❖ Child process still active even
though parent has terminated

❖ Must kill explicitly, or else will
keep running indefinitely

24

void fork8() {

if (fork() == 0) {

/* Child */

printf("Running Child, PID = %d\n",

getpid());

while (1); /* Infinite loop */

} else {

printf("Terminating Parent, PID = %d\n",

getpid());

exit(0);

}

} forks.c

Non-terminating
Child

CSE351, Winter 2021M7-L2: Processes II

Process Management Summary

❖ fork makes two copies of the same process (parent & child)

▪ Returns different values to the two processes

❖ exec* replaces current process from file (new program)

▪ Two-process program:
• First fork()

• if (pid == 0) { /* child code */ } else { /* parent code */ }

▪ Two different programs:
• First fork()

• if (pid == 0) { execv(…) } else { /* parent code */ }

❖ exit or return from main to end a process

❖ wait or waitpid used to synchronize parent/child execution
and to reap child process

25

CSE351, Winter 2021M7-L2: Processes II

Roadmap

26

car *c = malloc(sizeof(car));

c->miles = 100;

c->gals = 17;

float mpg = get_mpg(c);

free(c);

Car c = new Car();

c.setMiles(100);

c.setGals(17);

float mpg =

c.getMPG();

get_mpg:

pushq %rbp

movq %rsp, %rbp

...

popq %rbp

ret

Java:C:

Assembly
language:

Machine
code:

0111010000011000

100011010000010000000010

1000100111000010

110000011111101000011111

Computer
system:

OS:

Memory & data
Integers & floats
x86 assembly
Procedures & stacks
Executables
Arrays & structs
Memory & caches
Processes
Virtual memory
Memory allocation
Java vs. C

CSE351, Winter 2021M7-L2: Processes II

Virtual Memory (VM*)

❖ Overview and motivation

❖ VM as a tool for caching

❖ Address translation

❖ VM as a tool for memory management

❖ VM as a tool for memory protection

27
*Not to be confused with “Virtual Machine” which is a whole other thing.

Warning: Virtual memory is pretty complex,
but crucial for understanding how processes

work and for debugging performance

CSE351, Winter 2021M7-L2: Processes II

Memory as we know it so far… is virtual!

❖ Programs refer to virtual memory addresses
▪ movq (%rdi),%rax

▪ Conceptually memory is just a very large array of bytes

▪ System provides private address space to each process

❖ Allocation: Compiler and run-time system
▪ Where different program objects should be stored

▪ All allocation within single virtual address space

❖ But…
▪ We probably don’t have 2w bytes of physical memory

▪ We certainly don’t have 2w bytes of physical memory
for every process

▪ Processes should not interfere with one another

• Except in certain cases where they want to share code or data
28

0xFF∙∙∙∙∙∙F

0x00∙∙∙∙∙∙0

CSE351, Winter 2021M7-L2: Processes II

Problem 1: How Does Everything Fit?

29

64-bit virtual addresses can address
several exabytes

(18,446,744,073,709,551,616 bytes)

Physical main memory offers
a few gigabytes

(e.g., 8,589,934,592 bytes)

?

1 virtual address space per process,
with many processes…

(Not to scale; physical memory would be smaller
than the period at the end of this sentence compared
to the virtual address space.)

CSE351, Winter 2021M7-L2: Processes II

Problem 2: Memory Management

30

Physical main memory

What goes
where?

stack
heap

.text

.data

…

Process 1
Process 2
Process 3
…
Process n

x

Each process has…
We have multiple
processes:

CSE351, Winter 2021M7-L2: Processes II

Problem 3: How To Protect

31

Physical main memory

Process i

Process j

Problem 4: How To Share?
Physical main memory

Process i

Process j

CSE351, Winter 2021M7-L2: Processes II

How can we solve these problems?

❖ “Any problem in computer science can be solved by adding
another level of indirection.” – David Wheeler, inventor of the subroutine

❖ Without Indirection

❖ With Indirection

32

What if I want to move Thing?

P2 Thing

P1

P3

P2 Thing

P3

P1

NewThing

NewThing

CSE351, Winter 2021M7-L2: Processes II

Indirection

❖ Indirection: The ability to reference something using a name,
reference, or container instead of the value itself. A flexible
mapping between a name and a thing allows changing the
thing without notifying holders of the name.
▪ Adds some work (now have to look up 2 things instead of 1)

▪ But don’t have to track all uses of name/address (single source!)

❖ Examples:
▪ Phone system: cell phone number portability

▪ Domain Name Service (DNS): translation from name to IP address

▪ Call centers: route calls to available operators, etc.

▪ Dynamic Host Configuration Protocol (DHCP): local network address
assignment

33

CSE351, Winter 2021M7-L2: Processes II

Indirection in Virtual Memory

34

❖ Each process gets its own private virtual address space

❖ Solves the previous problems!

Physical memory

Virtual memory

Virtual memory

Process 1

Process 𝑛

mapping

CSE351, Winter 2021M7-L2: Processes II

Address Spaces

❖ Virtual address space: Set of N = 2𝑛 virtual addr

▪ {0, 1, 2, 3, …, N-1}

❖ Physical address space: Set of M = 2𝑚 physical addr

▪ {0, 1, 2, 3, …, M-1}

❖ Every byte in main memory has:

▪ one physical address (PA)

▪ zero, one, or more virtual addresses (VAs)

35

CSE351, Winter 2021M7-L2: Processes II

Polling Questions

❖ On a 64-bit machine currently running 8 processes,
how much virtual memory is there?

❖ True or False: A 32-bit machine with 8 GiB of RAM
installed would never use all of it (in theory).

36

CSE351, Winter 2021M7-L2: Processes II

Mapping

❖ A virtual address (VA) can be mapped to either physical
memory or disk
▪ Unused VAs may not have a mapping

▪ VAs from different processes may map to same location in memory/disk

37

Process 2’s Virtual
Address Space

Physical
Memory

Disk

Process 1’s Virtual
Address Space

“Swap Space”

CSE351, Winter 2021M7-L2: Processes II

Summary

❖ Virtual memory provides:

▪ Ability to use limited memory (RAM) across multiple
processes

▪ Illusion of contiguous virtual address space for each process

▪ Protection and sharing amongst processes

38

CSE351, Winter 2021M7-L2: Processes II

Detailed examples:

❖ Consecutive forks

❖ wait() example

❖ waitpid() example

39

CSE351, Winter 2021M7-L2: Processes II

Example: Two consecutive forks

40

void fork2() {

printf("L0\n");

fork();

printf("L1\n");

fork();

printf("Bye\n");

}

printf printf fork

printf

printffork

printf fork

printf

printf

Bye

L0

Bye

L1

L1

Bye

Bye

Feasible output:

L0

L1

Bye

Bye

L1

Bye

Bye

Infeasible output:

L0

Bye

L1

Bye

L1

Bye

Bye

CSE351, Winter 2021M7-L2: Processes II

Example: Three consecutive forks

❖ Both parent and child can continue forking

41

void fork3() {

printf("L0\n");

fork();

printf("L1\n");

fork();

printf("L2\n");

fork();

printf("Bye\n");

} L1 L2

L2

Bye

Bye

Bye

Bye

L1 L2

L2

Bye

Bye

Bye

Bye

L0

CSE351, Winter 2021M7-L2: Processes II

wait() Example

❖ If multiple children completed, will take in arbitrary order

❖ Can use macros WIFEXITED and WEXITSTATUS to get
information about exit status

42

void fork10() {

pid_t pid[N];

int i;

int child_status;

for (i = 0; i < N; i++)

if ((pid[i] = fork()) == 0)

exit(100+i); /* Child */

for (i = 0; i < N; i++) {

pid_t wpid = wait(&child_status);

if (WIFEXITED(child_status))

printf("Child %d terminated with exit status %d\n",

wpid, WEXITSTATUS(child_status));

else

printf("Child %d terminated abnormally\n", wpid);

}

}

CSE351, Winter 2021M7-L2: Processes II

waitpid(): Waiting for a Specific Process

pid_t waitpid(pid_t pid,int &status,int options)

▪ suspends current process until specific process terminates

▪ various options (that we won’t talk about)

43

void fork11() {

pid_t pid[N];

int i;

int child_status;

for (i = 0; i < N; i++)

if ((pid[i] = fork()) == 0)

exit(100+i); /* Child */

for (i = 0; i < N; i++) {

pid_t wpid = waitpid(pid[i], &child_status, 0);

if (WIFEXITED(child_status))

printf("Child %d terminated with exit status %d\n",

wpid, WEXITSTATUS(child_status));

else

printf("Child %d terminated abnormally\n", wpid);

}

}

