YW UNIVERSITY of WASHINGTON

Processes ||
CSE 351 Winter 2021

Instructor:
Mark Wyse

M7-L2: Processes Il

CSE351, Winter 2021

Teaching Assistants:
Kyrie Dowling
Catherine Guevara
lan Hsiao

Jim Limprasert
Armin Magness

Allie Pfleger

FIGURING OUT WHY' MY HOME
SERVER KEEPS RUNNING OUr
OF SWAP SPACE AND CRASHING:

‘f
|

i

i}
}

o

:
IR IRFIRITILE
¥

[od
e
il
-y

i
.

-
™
—
-
=
-

1-10 HOURs

PLUGGING IT NTo A LIGHT TIMER

5 MINUTES

Cosmo Wang
Ronald Widjaja

\WJHY EVERYTHING I HAVE IS BROKEN
https://xkcd.com/1495/

https://xkcd.com/1495/

YW UNIVERSITY of WASHINGTON

Administrivia

+» hw17 due tonight!

+» hw18 due Friday, hw19 due Monday
+» Study Guide 2 due Monday 3/1

+» Lab 4 due Friday 3/5

CSE351, Winter 2021

YW UNIVERSITY of WASHINGTON M7-L2: Processes |l CSE351, Winter 2021

Reading Review

+» Terminology:
LAL\' . ° . °
= exec*(), exit(),wait(),waitpid()
" init/systemd, reaping, zombie processes

" Virtual memory: virtual vs. physical addresses and address
space, swap space

% Questions from the Reading?

YA UNIVERSITY of WASHINGTON M7-L2: Processes |

Processes

+ Processes and context switching

» Creating new processes
" fork () and exec* ()

+» Ending a process
" ex1t(),walit(),waitpid{()

= Zombies

CSE351, Winter 2021

M7-L2: Processes Il CSE351, Winter 2021

YW UNIVERSITY of WASHINGTON

Creating New Processes & Programs

Ve

Process 1

“Memory”

Stack

Heap

Data

()

Process 2

“Memory”

Stack
Heap

fork ()

»

Code

llCPU”

Registers

Data
Code

A

llCPU”

4 Registers

exec* ()
-

. Sc-““’"
Chrome.exe] Bfﬁ

CSE351, Winter 2021

YA UNIVERSITY of WASHINGTON M7-L2: Processes |

Creating New Processes & Programs

+ fork-exec model (Linux):
= fork () creates a copy of the current process

" exec* () replaces the current process’ code and address
space with the code for a different program

- Family: execv, execl, execve, execle, execvp, execlp

" fork () and execve () are system calls

% Other system calls for process management:
" getpid()
" ex1it ()

" wait (),waitpid()

YW UNIVERSITY of WASHINGTON

M7-L2: Processes Il CSE351, Winter 2021

fork: Creating New Processes

+ pid _t fork(void)

= Creates a new “child” process that is identical to the calling “parent”
process, including all state (memory, registers, etc.)

= Returns 0 to the child process

= Returns child’s process ID (PID) to the parent process

Child is almost identical to parent:

® Child gets an identical
(but separate) copy of the
parent’s virtual address
space

® Child has a different PID
than the parent

pid t pid = fork();

(pid == {
c&m printf ("hello from child\n");
} else {

ﬂkprintf("hello from parent\n");
9

+» forkis unigue (and often confusing) because it is called once

but returns “twice”

YW UNIVERSITY of WASHINGTON

M7-L2: Processes Il

CSE351, Winter 2021

Understanding fork ()

Process X (parent; PID X)

Process Y (child; PIDY)
» pid t fork ret = fork(); » pid t fork ret = fork();
if (fork ret == 0) { if (fork ret == 0) {
printf ("hello from child\n"); printf ("hello from child\n");
} else { } else {
printf ("hello from parent\n"); printf ("hello from parent\n");
} }

YW UNIVERSITY of WASHINGTON

M7-L2: Processes Il

CSE351, Winter 2021

Understanding fork ()

Process X (parent; PID X)

Process Y (child; PIDY)
» pid t fork ret = fork(); » pid t fork ret = fork();
if (fork ret == 0) { if (fork ret == 0) {
printf ("hello from child\n"); printf ("hello from child\n");
} else { } else {
printf ("hello from parent\n"); printf ("hello from parent\n");
} }
fork ret=Y fork ret=0
pid t fork ret = fork(); T pid t fork ret = fork(); hl
» if (fork ret == 0) { » if (fork ret == 0) {
printf ("hello from child\n"); printf ("hello from child\n");
} else { } else {
printf ("hello from parent\n"); printf ("hello from parent\n");
} }

YW UNIVERSITY of WASHINGTON

Understanding fork ()

M7-L2: Processes Il

Process X (parent; PID X)

»

pid t fork ret = fork();
if (fork ret == 0) {

} else {

}

printf ("hello from child\n");

printf ("hello from parent\n");

fork ret=Y

»

pid t fork ret = fork();
if (fork ret == 0) {

} else {

printf ("hello from child\n");

printf ("hello from parent\n");

hello from parent

Which one appears first? Ve*

CSE351, Winter 2021

Process Y (child; PIDY)

» pid t fork ret = fork();

if (fork ret == 0) {

printf ("hello from child\n");
} else {

printf ("hello from parent\n");
}

fork ret=0
pid t fork ret = fork();
if (fork ret == 0) {
printf ("hello from child\n");
} else {

printf ("hello from parent\n");
}

hello from child

'Bekcwawigh&

10

YW UNIVERSITY of WASHINGTON M7-L2: Processes |l CSE351, Winter 2021

Fork Example

X

D)

L)

X

D)

L)

o

D)

L)

0‘0

void forkl () {

int x = 1;
pid t fork ret = fork();
if (fork ret == 0)
printf ("Child has x = %d\n", ++x);
else -

(‘ printf ("Parent has x = %d\n",

Sprintf ("Bye from process %d with x = %$d\n", getpid(), x):;
}

Both processes continue/start execution after fork
= Child starts at instruction after the call to fork (storing into pid)

Can’t predict execution order of parent and child
Both processes start with x =1

= Subsequent changes to x are independent

Shared open files: stdout is the same in both parent and child

12

YW UNIVERSITY of WASHINGTON M7-L2: Processes |l CSE351, Winter 2021

Modeling £fork with Process Graphs

« A process graph is a useful tool for capturing the partial
ordering of statements in a concurrent program
= Each vertex is the execution of a statement

1
" a — b means a happens before b ?rw‘e‘\%
" Edges can be labeled with current value of variables 3 __ .
. . A
" printf vertices can be labeled with output P! ey 0

= Each graph begins with a vertex with no inedges

« Any topological sort of the graph corresponds to a feasible
total ordering

= Total ordering of vertices where all edges point from left to right

13

M7-L2: Processes Il CSE351, Winter 2021

YW UNIVERSITY of WASHINGTON

Fork Example

Possible Output

void forkl () {
int x = 1;
pid t fork ret
if (fork ret

else

printf ("Child has x =

printf ("Parent has x =

fork () ;

)

$d\n", ++x);

sd\n", --x);

o\

x=0

C x=2 ' Bye C
++x printf printf RC BC

Parent

printf ("Bye from process %d with x = %d\n", getpid(), x);
}
= BC
C
o~ - oslole or dUys el
O e 7 - p—=®

B¢

Bye

>®
--x

- 4
1 fork

%

»
»

>0
printf printf

' -:""

\ -4

14

YW UNIVERSITY of WASHINGTON M7-L2: Processes |l CSE351, Winter 2021

Polling Question

+ |Is the following sequence of outputs possible?

= \/ote in Ed Lessons Seq 1:
void nestedfork () { f .0
printf ("LO\n") ;
® if (fork() == 0) ({ JBye
,vﬁ printf ("L1\n"); j T.1
if (fork() == 0) {
printf ("L2\n") ; /LZ
} /Bye
}
(x""‘printf ("Bye\n") ; 2uen s / Bye
} ¥
L 6“5
]\fm@ oD G~ :«; . @ Yes |
o \>°
7 eI e C. We're lost...

15

YW UNIVERSITY of WASHINGTON M7-L2: Processes |l CSE351, Winter 2021

Fork-Exec

Note: the return values of fork and
exec* should be checked for errors

+ fork-exec model:
= fork () creates a copy of the current process

" exec* () replaces the current process’ code and address
space with the code for a different program
- Whole family of exec calls — see exec (3) and execve (2)

// Example arguments: path:"/usr/bingls”;)

// argv/[0]="/usr/bin/1s", argv/[1]="-ahl", argv[2]=NULL
void fork exec(char *path, char *argv[]) {
pid t fork ret = fork();
if (fork ret != 0) {
printf ("Parent: created a child %d\n", fork ret);
} else {

3 printf ("Child: about to exec a new program\n");
-7 execv (path, argv);

}
printf ("This line printed by parent only!\n");

16

YW UNIVERSITY of WASHINGTON M7-L2: Processes |l CSE351, Winter 2021

Exec-ing a new program

Stack
Very high-level diagram of what
happens when you run the
Heap command “1s” in a Linux shell:
Data « This is the loading part of CALL!
Code: /usr/bin/bash |&
fork
parent l o ()\ child
Stack
Stack
¢ N
exec* () ;\,,.P ?:f\t
> (D)(a
Heap
Data - (| Data
v
Code: /usr/bir@/bash{ ‘) gcn&v’}:o[Code: /usr/bin/ls

Q;O-— \9 17

YA UNIVERSITY of WASHINGTON M7-L2: Processes |

Processes

» Processes and context switching

+ Creating new processes

" fork () andexec* ()

+» Ending a process
" exit(),wait(),waitpid()
= Zombies

CSE351, Winter 2021

18

YA UNIVERSITY of WASHINGTON M7-L2: Processes |

CSE351, Winter 2021

exit: Ending a process

+ vold exit (int status)

= Explicitly exits a process

- Status code: 0is used for a normal exit, nonzero for abnormal exit

«» The return statement frommain () also ends a

rocess in C Y wmein()
P cvnn & o rornd

" The return value is the status code 3 -
cEVIN W,

19

YW UNIVERSITY of WASHINGTON M7-L2: Processes |l CSE351, Winter 2021

Zombies

+ A terminated process still consumes system resources
"&Various tables maintained by OS
= Called a “zombie” (a living corpse, half alive and half dead)

+ Reaping is performed by parent on terminated child

" Parentis given exit status information and kernel then
deletes zombie child process

+» What if parent doesn’t reap?

= |f any parent terminates without reaping a child, then the
orphaned child will be reaped by init process (pid of 1)

- Note: on recent Linux systems, init has been renamed systemd

" |n long-running processes (e.g., shells, servers) we need
explicit reaping

20

YA UNIVERSITY of WASHINGTON M7-L2: Processes |

CSE351, Winter 2021

wait: Synchronizing with Children

+ int wailt (int* child status)

= Suspends current process (i.e., the parent) until one of its
children terminates

" Return value is the PID of the child process that terminated
g On successful return, the child process is reaped

" Ifchild status !=NULL, thenthe *child status
value indicates why the child process terminated

- Special macros for interpreting this status — see man wait (2)

+ Note: If parent process has multiple children, wait
will return when any of the children terminates
" waitpid can be used to wait on a specific child process

‘—/_—_'

21

YW UNIVERSITY of WASHINGTON M7-L2: Processes |l CSE351, Winter 2021

wait: Synchronizing with Children

void fork wait () {
int child status;

if (fork() == 0) {
printf ("HC: hello from child\n");
exit (0) ;

} else {

printf ("HP: hello from parent\n");
wait (&child status);
printf ("CT: child has terminated\n");

}
printf ("Bye\n") ;

} forks.c
HC exi
print Feasible output: Jlnfea5|ble output:
3 HC HP
v CT HP % CT
HP BX:e CT Bye)
—D— >@ > >
fork printf wait printf Bye HC

22

YW UNIVERSITY of WASHINGTON

M7-L2: Processes I

CSE351, Winter 2021

void fork7 ()
if

Example: Zombie

linux> ./forks 7 &
[1] 6639
Running Parent, PID

while

6639

(fork ()
/* Child */

{
== 0) {

printf ("Terminating Child, PID = %d\n",
getpid());
ex1it (0);
} else {
printf ("Running Parent, PID = %d\n",

getpid());
(1); /* Infinite loop */

forks.c

Terminating Child, PID 6640

linux> ps
PID TTY
6585 ttyp9
6639 ttyp9
6640 ttyp9

ttyp9

TIME
00:00
00:03
00:00
00:00

CMD

tcsh

forks
forksi<defunct>

ps

00:
00:
00:
00:

6041
linux> kill 6639

[1] Terminated
linux> ps

PID TTY

6585 ttyp9

6642 ttyp9

ps shows child process as
“defunct”

Killing parent allows child to be
reaped by init

23

YW UNIVERSITY of WASHINGTON

Example:
Non-terminating

Child

./forks 8
Terminating Parent,
Running Child, PID =
linux> ps
PID TTY
6585 ttyp9
6676 ttyp9
6677 ttyp9
linux> kill

linux>
PID =
0676

TIME
:00:00
:00:00
:00:00 ps

CMD

linux> ps
PID TTY
6585 ttyp9
6678 ttyp9

M7-L2: Processes I

CSE351, Winter 2021

void fork8() {
if (fork() == 0) {
/* Child */
printf ("Running Child,
getpid());

PID = %d\n",

while (1); /* Infinite loop */
} else {
printf ("Terminating Parent, PID = %d\n",
getpid());
ex1t (0);
}
} forks.c

tcsh
forks

6675

Child process still active even
though parent has terminated

Must kill explicitly, or else will
keep running indefinitely

24

YW UNIVERSITY of WASHINGTON M7-L2: Processes |l CSE351, Winter 2021

Process Management Summary

fork makes two copies of the same process (parent & child)

= Returns different values to the two processes

» exec™* replaces current process from file (new program)

" Two-process program:

First fork ()
- if (pid == 0) { /* child code */} else { /* parent code */}

g™
- First fork () for? e
- if (pid ==0) { execv({)} else { /* parent code */}

. exlit or return frommain to end a process

" Two different programs:

. walt orwaltpid used to synchronize parent/child execution
and to reap child process

25

YA UNIVERSITY of WASHINGTON M7-L2: Processes |l CSE351, Winter 2021

Roadmap

C: Java: Memory & data

car *c = malloc(sizeof (car)); Car ¢ = new Car(); Integers & floats
c->miles = 100; c.setMiles (100) ; x86 assembly
c->gals = 17; c.setGals (17); Procedures & stacks
float mpg = get mpg(c); float mpg = Executables
free(c); c.getMPG () ; Arrays & structs
~ & Memory & caches
Assembly get_mpg: Processes
. pushg srbp .
language: movq srsp, $rbp Virtual memory
. Memory allocation
popq Srbp Javavs. C
ret i
\ 4
Machine 0111010000011000 \/
de: 100011010000010000000010 A \
COdE. 1000100111000010 A
110000011111101000011111 Windows 10 0sx Yosemie s
| [|
v v
Computer
system:

26

YW UNIVERSITY of WASHINGTON M7-L2: Processes |l CSE351, Winter 2021

Virtual Memory (VM¥*)

» Overview and motivation

» VM as a tool for caching

» Address translation

» VM as a tool for memory management
» VM as a tool for memory protection

Warning: Virtual memory is pretty complex,

but crucial for understanding how processes
work and for debugging performance

*Not to be confused with “Virtual Machine” which is a whole other thing.
27

YW UNIVERSITY of WASHINGTON M7-L2: Processes |l CSE351, Winter 2021

Memory as we know it so far... is virtual!

» Programs refer to[virtual memory\addresses OXFF--ren-F

" movg (%rdi),Srax

= Conceptually memory is just a very large array of bytes
= System provides private address space to each process

+ Allocation: Compiler and run-time system 11—
= Where different program objects should be stored i"b

= All allocation within single virtual address space

’:’ But.-- ﬁ'
= We probably don’t have 2% bytes of physical memory —{
.) . -
= We certainly don’t have 2% bytes of physical memory
for every process
= Processes should not interfere with one another 0x00-----0

Except in certain cases where they want to share code or data

—

28

YW UNIVERSITY of WASHINGTON M7-L2: Processes |l CSE351, Winter 2021

Problem 1: How Does Everything Fit?

64-bit virtual addresses can address Physical main memory offers
several exabytes a few gigabytes
(18,446,744,073,709,551,616 bytes) (e.g., 8,589,934,592 bytes)
\% é\'s % 6%

(Not to scale; physical memory would be smaller
than the period at the end of this sentence compared
to the virtual address space.)

1 virtual address space per process,
with many processes...

29

YW UNIVERSITY of WASHINGTON M7-L2: Processes |l CSE351, Winter 2021

Problem 2: Memory Management

Physical main memory

We have multiple
processes: Each process has...
Process 1 " l \“‘ ,l
Process 2 ;tack
Process 3 eap
X text tht gopes
where:
Process n .data
- @

30

YW UNIVERSITY of WASHINGTON CSE351, Winter 2021

Problem 3: How To Protect

Physical main memory
o >
Process j

Problem 4: How To Share?

Physical main memory

31

YA UNIVERSITY of WASHINGTON M7-L2: Processes |

How can we solve these problems?

CSE351, Winter 2021

+ “Any problem in computer science can be solved by adding
another level of indirection.” - pavid Wheeler, inventor of the subroutine

P~

WIthOUt |ndIFECtIOn PZ ... :E
P3 S
P1 4

With Indirection >
P2 vi e —

owt,
P3 Né? I\\::w’\ N
\et?

What if | want to move Thing?

Thing

NewThing

Thing

NewThing

32

YW UNIVERSITY of WASHINGTON M7-L2: Processes |l CSE351, Winter 2021

Indirection

Indirection: The ability to reference something using a name,
reference, or container instead of the value itself. A flexible
mapping between a name and a thing allows changing the
thing without notifying holders of the name.

= Adds some work (now have to look up 2 things instead of 1)

= But don’t have to track all uses of name/address (single source!)

Examples:

"= Phone system: cell phone number portability
= Domain Name Service (DNS): translation from name to IP address
= Call centers: route calls to available operators, etc.

= Dynamic Host Configuration Protocol (DHCP): local network address
assignment

33

YW UNIVERSITY of WASHINGTON M7-L2: Processes |l CSE351, Winter 2021

Indirection in Virtual Memory

Virtual memory

Process 1 | &
n
Physical memory
: mapping o
Virtual memory

Process n

+ Each process gets its own private virtual address space
+ Solves the previous problems!

34

YW UNIVERSITY of WASHINGTON CSE351, Winter 2021

Address Spaces

+ Virtual address space: Set of N = 2" virtual addr
= {0,1,2,3,..,N-1}

+ Physical address space: Set of M = 2™ physical addr
= {0,1,2,3,.. M-1}

+ Every byte in main memory has:
= one physical address (PA)

= zero, one, or more virtual addresses (VAs)

35

YW UNIVERSITY of WASHINGTON CSE351, Winter 2021

Polling Questions

«» On a 64-bit machine currently running 8 processes,
how much virtual memory is there?

+» True or False: A 32-bit machine with 8 GiB of RAM
installed would never use all of it (in theory).

36

YA UNIVERSITY of WASHINGTON M7-L2: Processes |

Mapping

+ A virtual address (VA) can be mapped to either physical
memory or disk

= Unused VAs may not have a mapping

= VAs from different processes may map to same location in memory/disk

Process 1’s Virtual
Address Space

Physical
Memory

j “Swap Space”

37

Process 2’s Virtual Disk

Address Space

S riris

YW UNIVERSITY of WASHINGTON

M7-L2: Processes Il

CSE351, Winter 2021

Summary

+ Virtual memory provides:

= Ability to use limited memory (RAM) across multiple
processes

" |llusion of contiguous virtual address space for each process
" Protection and sharing amongst processes

38

YA UNIVERSITY of WASHINGTON M7-L2: Processes |l CSE351, Winter 2021

BONUS SLIDES

Detailed examples:

« Consecutive forks
» walt () example
» waltpid () example

39

YW UNIVERSITY of WASHINGTON

M7-L2: Processes Il

CSE351, Winter 2021

Example: Two consecutive forks

void fork2 () {
printf ("LO\n") ;
fork () ;
printf ("L1\n");
fork () ;

printf ("Bye\n") ;

Bye

®
printf
Bye
> >»®

Bye

L1l
»0— >
printf fork printf
prfhtf
.0 L1l Bye
o— >@ >Q— >®

printf fork printf

Feasible output:
LO

L1

Bye

Bye

L1

Bye

Bye

f;rk printf

Infeasible output:
LO

Bye

L1

Bye

L1

Bye

Bye

40

YW UNIVERSITY of WASHINGTON

M7-L2: Processes Il

Example: Three consecutive forks

+» Both parent and child can continue forking

void fork3 () {
printf ("LO\n") ;
fork () ;
printf ("L1\n") ;
fork () ;
printf ("L2\n") ;
fork () ;
printf ("Bye\n") ;
}

LO

Bye

12 | Bye

Bye

11 |2 | Bye
‘ Bye
12 | Bye

Bye

11|12 | Bye

CSE351, Winter 2021

41

YW UNIVERSITY of WASHINGTON

wait () Example

+ If multiple children completed, will take in arbitrary order
+ Can use macros WIFEXITED and WEXITSTATUS to get

M7-L2: Processes Il

information about exit status

CSE351, Winter 2021

void forklO0() {
pid t pid[N];
int 1i;
int child status;

else

for (1 = 0; 1 < N; 1i++)
if ((pid[i] = fork()) == 0)
exit (100+1i); /* Child */
for (1 = 0; 1 < N; 1i++) {

pid t wpid = wait(&child status);
if (WIFEXITED (child_status))

printf ("Child %d terminated with exit status %d\n"
wpid, WEXITSTATUS (child status));

printf ("Child %d terminated abnormally\n", wpid):;

42

YA UNIVERSITY of WASHINGTON M7-L2: Processes |

waitpid (): Waiting for a Specific Process

pid t waltpid(pid tpid,int &status,intoptions)

" suspends current process until specific process terminates
= various options (that we won’t talk about)

void forkll () f{
pid t pidI[N];

int 1i;
int child status;
for (1 = 0; 1 < N; 1i++)
if ((pid[i] = fork()) == 0)
exit (100+1i); /* Child */
for (1 = 0; 1 < N; 1i++) {

pid t wpid = waitpid(pid[i], &child status, 0);
if (WIFEXITED (child_status))
printf ("Child %d terminated with exit status %d\n",
wpid, WEXITSTATUS (child status));
else

printf ("Child %d terminated abnormally\n", wpid);

CSE351, Winter 2021

43

