YA/ UNIVERSITY of WASHINGTON

M5-L2: Structs & Alignment

CSE351, Winter 2021

Structs & Alignment

CSE 351 Winter 2021

Guest Instructor:

Teaching Assistants:

Cosmo Wang Kyrie Dowling Catherine Guevara lan Hsiao
Jim Limprasert Armin Magness Allie Pfleger
Cosmo Wang Ronald Widjaja
SO WHAT DID YOU — TAKING ON TEEN VANDALS, I <€E. | | MY PUMPKIN'S NAME 1S HAROLD. HE | | T CARVED AND CARVED,
o/ HEANENS NO. MY FUMPKIN JUST REALZED THAT ALLTHE TIME | | AND THE NEXT THING T
,;[BUMPKIN! " SMALY HAS CHEST PANS, | | HE USED TOSPEND DAYDREAMING | | KNEW T HAD 740 PUMPKING,
IN FACT, (L LEAVE HE NOW SPENDS WORRYING, -
L A NOTE. (ARG HELLTRY TODISTRACT HMSELFLATER | | 0 "0
THEM NOT TO WITH HOUDAY =\
: RAOMONS, BT AR THE FOM

ITWONT WORK.

OF CHOICE.

http://xkcd.com/804/

http://xkcd.com/804/

YA/ UNIVERSITY of WASHINGTON M5-L2: Structs & Alignment CSE351, Winter 2021

Administrivia

+ Lab 2 due next Monday (2/8)
<+ hw13 due next Wednesday (2/10)

YA/ UNIVERSITY of WASHINGTON M5-L2: Structs & Alignment CSE351, Winter 2021

Reading Review sovck sface

) ’wt@t
+ Terminology: 7 > st

" Structs: tags and fields, . and -> operators

= Typedef

= Alignment, internal fragmentation, external fragmentation

% Questions from the Reading?

YA/ UNIVERSITY of WASHINGTON M5-L2: Structs & Alignment CSE351, Winter 2021

o ° Al (/—(?_C
Review Questlons/7 ik

struct 11 node {

?)@long data;
S struct 11 node* next;

Lran=2 [3.0d, n2;
+» How much space does (in bytes) does an instance of
struct 11 node take? R+ = h[é B l
+» Which of the following statements are syntactically
valid?
\/' nIJnext &n2;
Km D_g dataJ 351;

J® ni'next->data = 333;
< "(&n2)-$next- 96extfdata - 451;

——— 4

YA/ UNIVERSITY of WASHINGTON M5-L2: Structs & Alignment CSE351, Winter 2021

Data Structures in Assembly

« Arrays
" One-dimensional
® Multi-dimensional (nested)
" Multi-level
« Structs
= Alignment

YA/ UNIVERSITY of WASHINGTON M5-L2: Structs & Alignment CSE351, Winter 2021

Structs in C

+» A structured group of variables, possibly including
other structs
= Way of defining compound data types

struct song { p
char* title; &£—— struct song {

char* title;
int lengthInSeconds;

int lengthInSeconds; =

int yearReleased; @p/—— int yearReleased;
bi)7)
struct song songl; rsongl A
songl.title = "Seflorita"; : title: "Sefiorita"
songl.lengthInSeconds = 191; lengthInSeconds: 191
songl.yearReleased = 2019; | yearReleased: 2019]
struct song song2; (song?)
song2.title = "Call Me Maybe"; : title: "Call Me Maybe"
song2.lengthInSeconds = 193; lengthlnSeconds: 193
yearReleased: 2011
songZ.yearReleased = 2011; 4 J

YA/ UNIVERSITY of WASHINGTON M5-L2: Structs & Alignment CSE351, Winter 2021

Struct Definitions aser defmed
« Structure definition: /\\
strucE name {
= Does NOT declare a variable /* fields */ &—
= Variable type is ’]struct} name” }(j;‘
— ~ —— Easy to forget
semicolon!

2 Varlable declaratlons like any other data type:

|v-'\ '
struc name @ (Jp% @e ar [

insta nce pointer array

\./

« Can also combine struct and instance definitions:
- Wbe difficult to parse, though

/sltruct name {
/* fields */

YA/ UNIVERSITY of WASHINGTON

M5-L2: Structs & Alignment

CSE351, Winter 2021

Typedef in C

+» A way to create an alias for another data type:
typedef <data type> <allasﬁ®
P

= After typedef the alias can be used interchangeably with
the original data type

" e.g., typedef unsigned long 1nt uli;

+ Joint struct definition and typedef we —F‘iﬂf
= Don’t need to give struct a name in this case /—@
- _

[struct nm { > typedef ‘)structl
/* fields * - *~Tields */
J_I } /name;

~—ptypedef struct nm name; name nl;

name nl;

YA/ UNIVERSITY of WASHINGTON M5-L2: Structs & Alignment CSE351, Winter 2021

Scope of Struct Definition

+» Why is the placement of struct definition important?

= Declaring a variable creates space for it somewhere

= Without definition, program doesn’t knWe
™

struct data { Size = 24 bytes truct rec { 7
int ar[4]; - // int a[4];
long d; long 1i;
}; struct rec* next;
Size =32 bytes—— |

%Almost always define structs in globgl?cvame

top of your C file

= Struct definitions follow normal rules of scope

M5-L2: Structs & Alignment CSE351, Winter 2021

YA/ UNIVERSITY of WASHINGTON

Accessing Structure Members

+ @iven a struct instance, access
. <——&~
member using the . operator: wgée%]{
int a ;

F——
—> struct rec rl; long 1i;
—2orl.1 = val; struct rec* next;

+ Given a pointer to a struct:

struct rec* r;
r = &rl; // or malloc ,space for r to poilnt to

(B heasl) went) et
*r) .

i = val;

b g

We have two options:

— >+ Use * and . operators: (
__.

- Use @operatorfor short: r->i = val;

+» In assembly: register holds address of the first byte

= Access members with offsets
10

CSE351, Winter 2021

YA/ UNIVERSITY of WASHINGTON M5-L2: Structs & Alignment

class Record { ... }

Java side-note Record[¥]= Mep Record () ;

———

+ An instance of a class is like a pointer to a struct
containing the fields
= (Ignoring methods and subclassing for now)
" SoJava’s x.f islikeC’s x@f or (*x).f

——

+ In Java, almost everything is a pointer (“reference”) to

an object
= Cannot declare variables or fields that are structs or arrays

= Always a pointer to a struct or array
= So every Java variable or field is £ 8 bytes (but can point to
lots of data)

11

YA/ UNIVERSITY of WASHINGTON M5-L2: Structs & Alignment CSE351, Winter 2021

Structure Representation

struct rec { r
int al4];
long 1i;
struct rec* next; a 1 next
* = O
} st, *r &St; 0 16 24 32

« Characteristics

= Contiguously-allocated region of memory

= Refer to members within structure by names

—_—

= Fields may be of different types

12

YA/ UNIVERSITY of WASHINGTON M5-L2: Structs & Alignment CSE351, Winter 2021

Structure Representation

struct rec { +
—» int a[4 Qq w
—> long 1i; \
hE
0

—) struct rec* next; 1 next

} st, *r = &st; \

+ Structure represented as block of memory

16 32

= Big enough to hold all of the fields
=+ Fields ordered according to declaration order

e

= Even if another ordering would be more compact

+» Compiler determines overall size + positions of fields

= Machine-level prograrﬁ has no understanding of the
structures in the source code

13

YA/ UNIVERSITY of WASHINGTON M5-L2: Structs & Alignment

Accessing a Structure Member

struct rec {

int a[4];

long 1i;

struct rec* next;
} st, *r = &st;

« Compiler knows the offset of each member

@

CSE351, Winter 2021

r—->1
IVZZN¢ (ARYaN -1
a \ i next
0 1 24 32
21424
S A

_—

= No pointer arithmetic; compute as)(r@o(set)

long get 1 (struct rec* r)
return r->i;

}

{

r in $rdi
movqg 16 (%rdi), Srax
ret

long get a3 (struct rec* r)
return r->a[3];

}

{

r in $%$rdi
movl 12 (%rdi), %rax
ret

14

YA/ UNIVERSITY of WASHINGTON M5-L2: Structs & Alignment CSE351, Winter 2021

Pointer to Structure Member

struct rec { r
int afl4];
long 1i; M
struct rec* next; a 1 next
* = h
} st, *r &St; 0 16 24 32
long* addr of i (struct rec* r) # r in Srdi

{

return & (r—->1);
} ret

leag 16 (%rdi), Srax

struct rec** addr of next (struct rec* r) # r 1n %$rdi
{

return & (r->next);
} ret

leag 24 (%rdi), Srax

15

YA/ UNIVERSITY of WASHINGTON M5-L2: Structs & Alignment CSE351, Winter 2021

Generating Pointer to Array Element

struct rec { T r+4*index
int af4]; l
long 1i;
struct rec* next; a i next
} st, *r = &st; @ 16 24 32
o« Generating Pointer to int* find addr of array elem
Array Element (struct rec* r, long index)
{
= Offset of each structure return &r->alindex];
member determined at) \u
compile time & (r->a[index])
= Compute as: D ek WS

r 1n %rdi, index 1in $%rsi

leaq 0(%rdi,%rsi,4) , %rax
—

ret

r+4*index

Wit res W 13
16

YA/ UNIVERSITY of WASHINGTON M5-L2: Structs & Alignment CSE351, Winter 2021

Review: Memory Alignment in x86-64

+» Aligned means that any primitive object of K bytes
must have an address that is a multiple of K o

» Aligned addresses for data types:

- ot

char No restrictions
2 short Lowest bit must be zero: ...0, u‘jj >
4 1int, float Lowest 2 bits zero: ...0 <
00, ¢ Devo

8 long, double, * Lowest 3 bits zero: ...000,
16 long double Lowest 4 bits zero: ...0000,

17

YA/ UNIVERSITY of WASHINGTON M5-L2: Structs & Alignment CSE351, Winter 2021

Alignment Principles

+ Aligned Data
" Primitive data type requires K bytes
= Address must be multiple of K

= Required on some machines; advised on x86-64
— —— o

Ve

+» Motivation for Aligning Data

= Memory accessed by (aligned) chunks of bytes
(width is system dependent)
- Inefficient to load or store value that spans quad word boundaries
- Virtual memory trickier when value spans 2 pages (more on this later)

®" Though x86-64 hardware will work regardless of alignment of
data

18

YA/ UNIVERSITY of WASHINGTON

M5-L2: Structs & Alignment

Structures & Alignment

s+ Unaligned Data g

[c] 107

1[1] T

p ptl

CSE351, Winter 2021

\
struct S1 { L
char c; f

int i[2]; &
double v; Y

p+5 p+9 p+17 L o = G
+ Aligned Data

" Primitive data type requires K bytes
\ '>Addre must be multiple of K

Y @) ETS i1l IRC v

0 Ok p+8 16

P+

a

Multiple of 8

Multiple of~Q

p+
Multiple of 8

internal fragmentation

pt24

Multiple of 8
19

YA/ UNIVERSITY of WASHINGTON M5-L2: Structs & Alignment

CSE351, Winter 2021

Satisfying Alignment with Structures (1)

«» W.ithin structure:

= Must satisfy each element’s alignment requirement

+ QOverall structure placement

= Each structure has alignment requirement Ky«

- Kax = Largest alignment of any element
- Counts array elements individually as elements

+« Example:
" Kmax =8, due to double element

|)

struct Sl {_k;—
char c; ‘
int i[2]; fg
double v;

} st, *p = &st;

(cres)- 8

c 1[0] i[1]
— = (
p+0 P4 p+8 p+16
Multiple of~4\ Multiple of 8
Multiple of 8 internal fragmentation

—""""""TN

pt24

20

YA/ UNIVERSITY of WASHINGTON

M5-L2: Structs & Alignment

CSE351, Winter 2021

Satisfying Alignment with Structures (2)

+ Can find offset of individual fields struct 52 {
using offseto int i[2]

" Needto #include <stddef.h> char c;

= Example: offsetof (struct S2, c) returns 16 } st, *p = &st;

+ For largest alignment requirement Ky, Q
overall structure size must be multiple of Kj.x =

= Compiler will add padding at end of
structure to meet overall structure

alignment requirement e LU
v i [0] i[1] | c [
p+0 p+8 pt+16 pt24
A — A

Multigle of 8 external fragmentation Multiple of 8

- 21

YA/ UNIVERSITY of WASHINGTON M5-L2: Structs & Alignment CSE351, Winter 2021

Arrays of Structures

= Overall structure length multiple of K,,,,, |StEuct 52 |

double v;
+ Satisfy alignment requirement iﬁt i[2]7
char Cy;
for ev r%elementwfg{a\g \ a[10];
al0]) afll] al2] o o o
a b\//“”:%f(/% 24 a+48 a+72
v 1[0] 1[1] C

a+24 a+32 a+40 / a+48

external fragmentation .

YA/ UNIVERSITY of WASHINGTON M5-L2: Structs & Alignment CSE351, Winter 2021

Alignment of Structs

+» Compiler will do the following:

" Maintains declared ordering of fields in struct

[

= Each field must be aligned within the struct
(may insert padding) M—&gyyy(Ffwjo

- offsetof can be used to get actual field offset \%V‘”’%

= Qverall struct must be aligned according to largest field

= Total struct size must be multiple of its alignment \[v«o%
(may insert padding) & ctevuad

- sizeof should be used to get true size of stidcts

23

YA/ UNIVERSITY of WASHINGTON M5-L2: Structs & Alignment CSE351, Winter 2021

How the Programmer Can Save Space

+» Compiler must respect order elements are declared in

= Sometimes the programmer can save space by declaring
large data types first

struct S4 { struct S5 {
char c; int i;
int 1i; - char c;
char d; char d;
} st } st
C 1 d 1 c| d

24

YA/ UNIVERSITY of WASHINGTON M5-L2: Structs & Alignment

old

Practice Questions

struct old { ¥
int i; LF
short s[3];

';E% char* c; i%

float f; Lr
I

(Lot

» What are the old and new sizes of the struct?

sizeof (struct old) =

A,
B. 22 bytes
C.

< D. 3Byt
E. We're lost...

CSE351, Winter 2021

D)

B 770

fw'ﬁt‘V‘“’&
Minimize the size of the struct by re-ordering the vars

struct new {
— int

=)

sizeof (struct new)

22 bytes

28 bytes
We’re lost...

24 2% (22

N
et

YA/ UNIVERSITY of WASHINGTON M5-L2: Structs & Alignment

CSE351, Winter 2021

Summary

« Arraysin C
= Aligned to satisfy every element’s alignment requirement

< Structures

= Allocate bytes for fields in order declared by programmer

= Pad in middle to satisfy individual element alignment
requirements

"= Pad at end to satisfy overall struct alignment requirement

26

