
CSE351, Winter 2021M5-L2: Structs & Alignment

Structs & Alignment
CSE 351 Winter 2021

Guest Instructor: Teaching Assistants:
Cosmo Wang Kyrie Dowling Catherine Guevara Ian Hsiao

Jim Limprasert Armin Magness Allie Pfleger
Cosmo Wang Ronald Widjaja

http://xkcd.com/804/

http://xkcd.com/804/

CSE351, Winter 2021M5-L2: Structs & Alignment

Administrivia

v Lab 2 due next Monday (2/8)
v hw13 due next Wednesday (2/10)

2

CSE351, Winter 2021M5-L2: Structs & Alignment

Reading Review

v Terminology:
§ Structs: tags and fields, . and -> operators
§ Typedef
§ Alignment, internal fragmentation, external fragmentation

v Questions from the Reading?

3

CSE351, Winter 2021M5-L2: Structs & Alignment

Review Questions

v How much space does (in bytes) does an instance of
struct ll_node take?

v Which of the following statements are syntactically
valid?
§ n1.next = &n2;
§ n2->data = 351;
§ n1.next->data = 333;
§ (&n2)->next->next.data = 451;

4

struct ll_node {
long data;
struct ll_node* next;

} n1, n2;

CSE351, Winter 2021M5-L2: Structs & Alignment

Data Structures in Assembly

v Arrays
§ One-dimensional
§ Multi-dimensional (nested)
§ Multi-level

v Structs
§ Alignment

v Unions

5

CSE351, Winter 2021M5-L2: Structs & Alignment

Structs in C

v A structured group of variables, possibly including
other structs
§ Way of defining compound data types

6

struct song {
char* title;
int lengthInSeconds;
int yearReleased;

};

struct song song1;
song1.title = "Señorita";
song1.lengthInSeconds = 191;
song1.yearReleased = 2019;

struct song song2;
song2.title = "Call Me Maybe";
song2.lengthInSeconds = 193;
song2.yearReleased = 2011;

struct song {
char* title;
int lengthInSeconds;
int yearReleased;

};

song1
title: "Señorita"
lengthInSeconds: 191
yearReleased: 2019

song2
title: "Call Me Maybe"
lengthInSeconds: 193
yearReleased: 2011

CSE351, Winter 2021M5-L2: Structs & Alignment

Struct Definitions

v Structure definition:
§ Does NOT declare a variable
§ Variable type is “struct name”

v Variable declarations like any other data type:

v Can also combine struct and instance definitions:
§ This syntax can be difficult to parse, though

struct name name1, *pn, name_ar[3];

pointer arrayinstance

struct name {
/* fields */

} st, *p = &st;

struct name {
/* fields */

};

Easy to forget
semicolon!

CSE351, Winter 2021M5-L2: Structs & Alignment

Typedef in C

v A way to create an alias for another data type:
typedef <data type> <alias>;
§ After typedef, the alias can be used interchangeably with

the original data type
§ e.g., typedef unsigned long int uli;

v Joint struct definition and typedef
§ Don’t need to give struct a name in this case

8

typedef struct {
/* fields */

} name;
name n1;

struct nm {
/* fields */

};
typedef struct nm name;
name n1;

CSE351, Winter 2021M5-L2: Structs & Alignment

Scope of Struct Definition

v Why is the placement of struct definition important?
§ Declaring a variable creates space for it somewhere
§ Without definition, program doesn’t know how much space

v Almost always define structs in global scope near the
top of your C file
§ Struct definitions follow normal rules of scope

9

struct data {
int ar[4];
long d;

};

Size = 24 bytes struct rec {
int a[4];
long i;
struct rec* next;

};Size = 32 bytes

CSE351, Winter 2021M5-L2: Structs & Alignment

Accessing Structure Members

v Given a struct instance, access
member using the . operator:

struct rec r1;
r1.i = val;

v Given a pointer to a struct:
struct rec* r;
r = &r1; // or malloc space for r to point to

We have two options:
• Use * and . operators: (*r).i = val;

• Use -> operator for short: r->i = val;

v In assembly: register holds address of the first byte
§ Access members with offsets

10

struct rec {
int a[4];
long i;
struct rec* next;

};

CSE351, Winter 2021M5-L2: Structs & Alignment

Java side-note

v An instance of a class is like a pointer to a struct
containing the fields
§ (Ignoring methods and subclassing for now)
§ So Java’s x.f is like C’s x->f or (*x).f

v In Java, almost everything is a pointer (“reference”) to
an object
§ Cannot declare variables or fields that are structs or arrays
§ Always a pointer to a struct or array
§ So every Java variable or field is ≤ 8 bytes (but can point to

lots of data)

11

class Record { ... }
Record x = new Record();

CSE351, Winter 2021M5-L2: Structs & Alignment

Structure Representation

v Characteristics
§ Contiguously-allocated region of memory
§ Refer to members within structure by names
§ Fields may be of different types

12

a

r

i next

0 16 24 32

struct rec {
int a[4];
long i;
struct rec* next;

} st, *r = &st;

CSE351, Winter 2021M5-L2: Structs & Alignment

Structure Representation

v Structure represented as block of memory
§ Big enough to hold all of the fields

v Fields ordered according to declaration order
§ Even if another ordering would be more compact

v Compiler determines overall size + positions of fields
§ Machine-level program has no understanding of the

structures in the source code

13

struct rec {
int a[4];
long i;
struct rec* next;

} st, *r = &st;
a

r

i next

0 16 24 32

CSE351, Winter 2021M5-L2: Structs & Alignment

r in %rdi
movq 16(%rdi), %rax
ret

long get_i(struct rec* r) {
return r->i;

}

Accessing a Structure Member

v Compiler knows the offset of each member
§ No pointer arithmetic; compute as *(r+offset)

14

r->i

a

r

i next

0 16 24 32

struct rec {
int a[4];
long i;
struct rec* next;

} st, *r = &st;

long get_a3(struct rec* r) {
return r->a[3];

}

r in %rdi
movl 12(%rdi), %rax
ret

CSE351, Winter 2021M5-L2: Structs & Alignment

r in %rdi

leaq 16(%rdi), %rax

ret

Pointer to Structure Member

15

r in %rdi

leaq 24(%rdi), %rax

ret

long* addr_of_i(struct rec* r)
{

return &(r->i);
}

struct rec** addr_of_next(struct rec* r)
{

return &(r->next);
}

struct rec {
int a[4];
long i;
struct rec* next;

} st, *r = &st;
a

r

i next

0 16 24 32

CSE351, Winter 2021M5-L2: Structs & Alignment

r in %rdi, index in %rsi
leaq (%rdi,%rsi,4), %rax
ret

int* find_addr_of_array_elem
(struct rec* r, long index)

{
return &r->a[index];

}

Generating Pointer to Array Element

v Generating Pointer to
Array Element
§ Offset of each structure

member determined at
compile time

§ Compute as:
r+4*index

16

r+4*index

&(r->a[index])

struct rec {
int a[4];
long i;
struct rec* next;

} st, *r = &st;
a

r

i next

0 16 24 32

CSE351, Winter 2021M5-L2: Structs & Alignment

Review: Memory Alignment in x86-64

v Aligned means that any primitive object of 𝐾 bytes
must have an address that is a multiple of 𝐾

v Aligned addresses for data types:

17

𝐾 Type Addresses

1 char No restrictions

2 short Lowest bit must be zero: …02

4 int, float Lowest 2 bits zero: …002

8 long, double, * Lowest 3 bits zero: …0002

16 long double Lowest 4 bits zero: …00002

CSE351, Winter 2021M5-L2: Structs & Alignment

Alignment Principles

v Aligned Data
§ Primitive data type requires 𝐾 bytes
§ Address must be multiple of 𝐾
§ Required on some machines; advised on x86-64

v Motivation for Aligning Data
§ Memory accessed by (aligned) chunks of bytes

(width is system dependent)
• Inefficient to load or store value that spans quad word boundaries
• Virtual memory trickier when value spans 2 pages (more on this later)

§ Though x86-64 hardware will work regardless of alignment of
data

18

CSE351, Winter 2021M5-L2: Structs & Alignment

Structures & Alignment

v Unaligned Data

v Aligned Data
§ Primitive data type requires 𝐾 bytes
§ Address must be multiple of 𝐾

19

c i[0] i[1] v

p p+1 p+5 p+9 p+17

internal fragmentation

struct S1 {
char c;
int i[2];
double v;

} st, *p = &st;

c i[0] i[1] v3 bytes 4 bytes

p+0 p+4 p+8 p+16 p+24

Multiple of 4 Multiple of 8
Multiple of 8 Multiple of 8

CSE351, Winter 2021M5-L2: Structs & Alignment

Satisfying Alignment with Structures (1)

v Within structure:
§ Must satisfy each element’s alignment requirement

v Overall structure placement
§ Each structure has alignment requirement 𝐾!"#

• 𝐾!"# = Largest alignment of any element
• Counts array elements individually as elements

v Example:
§ 𝐾!"# = 8, due to double element

20

struct S1 {
char c;
int i[2];
double v;

} st, *p = &st;

c i[0] i[1] v3 bytes 4 bytes

p+0 p+4 p+8 p+16 p+24

Multiple of 4 Multiple of 8
Multiple of 8 internal fragmentation

CSE351, Winter 2021M5-L2: Structs & Alignment

Satisfying Alignment with Structures (2)

v Can find offset of individual fields
using offsetof()
§ Need to #include <stddef.h>
§ Example: offsetof(struct S2,c) returns 16

v For largest alignment requirement 𝐾"#$,
overall structure size must be multiple of 𝐾"#$
§ Compiler will add padding at end of

structure to meet overall structure
alignment requirement

21

v i[0] i[1] c 7 bytes

p+0 p+8 p+16 p+24

external fragmentation

struct S2 {
double v;
int i[2];
char c;

} st, *p = &st;

Multiple of 8Multiple of 8

CSE351, Winter 2021M5-L2: Structs & Alignment

Arrays of Structures

v Overall structure length multiple of 𝐾"#$
v Satisfy alignment requirement

for every element in array

22

a[0] a[1] a[2] • • •

a+0 a+24 a+48 a+72

struct S2 {
double v;
int i[2];
char c;

} a[10];

v i[0] i[1] c 7 bytes

a+24 a+32 a+40 a+48

external fragmentation

CSE351, Winter 2021M5-L2: Structs & Alignment

Alignment of Structs

v Compiler will do the following:
§ Maintains declared ordering of fields in struct
§ Each field must be aligned within the struct

(may insert padding)
• offsetof can be used to get actual field offset

§ Overall struct must be aligned according to largest field
§ Total struct size must be multiple of its alignment

(may insert padding)
• sizeof should be used to get true size of structs

23

CSE351, Winter 2021M5-L2: Structs & Alignment

How the Programmer Can Save Space

v Compiler must respect order elements are declared in
§ Sometimes the programmer can save space by declaring

large data types first

24

struct S4 {
char c;
int i;
char d;

} st;

struct S5 {
int i;
char c;
char d;

} st;

c i3 bytes d 3 bytes ci d 2 bytes

12 bytes 8 bytes

CSE351, Winter 2021M5-L2: Structs & Alignment

Practice Questions

25

struct old {
int i;

short s[3];

char* c;

float f;
};

struct new {
int i;

______ ______;

______ ______;

______ ______;
};

CSE351, Winter 2021M5-L2: Structs & Alignment

Summary

v Arrays in C
§ Aligned to satisfy every element’s alignment requirement

v Structures
§ Allocate bytes for fields in order declared by programmer
§ Pad in middle to satisfy individual element alignment

requirements
§ Pad at end to satisfy overall struct alignment requirement

26

