
CSE351, Winter 2021M4-L3: Executables

Executables
CSE 351 Winter 2021

Instructor: Teaching Assistants:

Mark Wyse Kyrie Dowling Catherine Guevara Ian Hsiao

Jim Limprasert Armin Magness Allie Pfleger

Cosmo Wang Ronald Widjaja

http://xkcd.com/1790/

http://xkcd.com/1790/

CSE351, Winter 2021M4-L3: Executables

Administrivia

❖ Lab 2 due Monday (2/8)

❖ hw12 due Friday

❖ hw13 due next Wednesday (2/10)

▪ Based on the next two lectures, longer than normal

❖ Remember: HW and readings due before lecture, at
11am PST on due date

2

CSE351, Winter 2021M4-L3: Executables

Roadmap

3

car *c = malloc(sizeof(car));

c->miles = 100;

c->gals = 17;

float mpg = get_mpg(c);

free(c);

Car c = new Car();

c.setMiles(100);

c.setGals(17);

float mpg =

c.getMPG();

get_mpg:

pushq %rbp

movq %rsp, %rbp

...

popq %rbp

ret

Java:C:

Assembly
language:

Machine
code:

0111010000011000

100011010000010000000010

1000100111000010

110000011111101000011111

Computer
system:

OS:

Memory & data
Integers & floats
x86 assembly
Procedures & stacks
Executables
Arrays & structs
Memory & caches
Processes
Virtual memory
Memory allocation
Java vs. C

CSE351, Winter 2021M4-L3: Executables

Reading Review

❖ Terminology:

▪ CALL: compiler, assembler, linker, loader

▪ Object file: symbol table, relocation table

▪ Disassembly

▪ Multidimensional arrays, row-major ordering

▪ Multilevel arrays

❖ Questions from the Reading?

▪ also post to Ed post!

4

CSE351, Winter 2021M4-L3: Executables

Building an Executable from a C File

❖ Code in files p1.c p2.c

❖ Compile with command: gcc -Og p1.c p2.c -o p

▪ Put resulting machine code in file p

❖ Run with command: ./p

5

text

text

binary

binary

Compiler (gcc –Og -S)

Assembler (gcc -c or as)

Linker (gcc or ld)

C program (p1.c p2.c)

Asm program (p1.s p2.s)

Object program (p1.o p2.o)

Executable program (p)

Static libraries (.a)

Loader (the OS)

CSE351, Winter 2021M4-L3: Executables

Compiler

❖ Input: Higher-level language code (e.g., C, Java)
▪ foo.c

❖ Output: Assembly language code (e.g., x86, ARM, MIPS)
▪ foo.s

❖ First there’s a preprocessor step to handle #directives
▪ Macro substitution, plus other specialty directives

▪ If curious/interested: http://tigcc.ticalc.org/doc/cpp.html

❖ Super complex, whole courses devoted to these!

❖ Compiler optimizations
▪ “Level” of optimization specified by capital ‘O’ flag (e.g. -Og, -O3)

▪ Options: https://gcc.gnu.org/onlinedocs/gcc/Optimize-Options.html

6

http://tigcc.ticalc.org/doc/cpp.html
https://gcc.gnu.org/onlinedocs/gcc/Optimize-Options.html

CSE351, Winter 2021M4-L3: Executables

Compiling Into Assembly

❖ C Code (sum.c)

❖ x86-64 assembly (gcc –Og –S sum.c)

Warning: You may get different results with other versions of
gcc and different compiler settings

7

void sumstore(long x, long y, long *dest) {

long t = x + y;

*dest = t;

}

sumstore(long, long, long*):

addq %rdi, %rsi

movq %rsi, (%rdx)

ret

CSE351, Winter 2021M4-L3: Executables

Assembler

❖ Input: Assembly language code (e.g., x86, ARM, MIPS)
▪ foo.s

❖ Output: Object files (e.g., ELF, COFF)
▪ foo.o

▪ Contains object code and information tables

❖ Reads and uses assembly directives

▪ e.g., .text, .data, .quad

▪ x86: https://docs.oracle.com/cd/E26502_01/html/E28388/eoiyg.html

❖ Produces “machine language”
▪ Does its best, but object file is not a completed binary

❖ Example: gcc -c foo.s

8

https://docs.oracle.com/cd/E26502_01/html/E28388/eoiyg.html

CSE351, Winter 2021M4-L3: Executables

Producing Machine Language

❖ Simple cases: arithmetic and logical operations, shifts, etc.
▪ All necessary information is contained in the instruction itself

❖ What about the following?
▪ Conditional jump

▪ Accessing static data (e.g., global variable or jump table)

▪ call

❖ Addresses and labels are problematic because the final
executable hasn’t been constructed yet!
▪ So how do we deal with these in the meantime?

9

CSE351, Winter 2021M4-L3: Executables

Object File Information Tables

❖ Symbol Table holds list of “items” that may be used by other
files
▪ Non-local labels – function names for call

▪ Static Data – variables & literals that might be accessed across files

❖ Relocation Table holds list of “items” that this file needs the
address of later (currently undetermined)
▪ Any label or piece of static data referenced in an instruction in this file

• Both internal and external

❖ Each file has its own symbol and relocation tables

10

CSE351, Winter 2021M4-L3: Executables

Object File Format

1) object file header: size and position of the other pieces of the
object file

2) text segment: the machine code

3) data segment: data in the source file (binary)

4) relocation table: identifies lines of code that need to be
“handled”

5) symbol table: list of this file’s labels and data that can be
referenced

6) debugging information

❖ More info: ELF format
▪ http://www.skyfree.org/linux/references/ELF_Format.pdf

11

http://www.skyfree.org/linux/references/ELF_Format.pdf

CSE351, Winter 2021M4-L3: Executables

Practice Questions

❖ The following labels/symbols will show up in which
table(s) in the object file?

▪ A (non-static) user-defined function

▪ A local variable

▪ A library function

12

CSE351, Winter 2021M4-L3: Executables

Linker

❖ Input: Object files (e.g., ELF, COFF)
▪ foo.o

❖ Output: executable binary program
▪ a.out

❖ Combines several object files into a single executable (linking)

❖ Enables separate compilation/assembling of files
▪ Changes to one file do not require recompiling of whole program

13

CSE351, Winter 2021M4-L3: Executables

Linking

1) Take text segment from each .o file and put them together

2) Take data segment from each .o file, put them together, and
concatenate this onto end of text segments

3) Resolve References
▪ Go through Relocation Table; handle each entry

14

object file 1

info 1

data 1

text 1

object file 2

info 2

data 2

text 2

Linker

a.out

Relocated data 1

Relocated data 2

Relocated text 1

Relocated text 2

CSE351, Winter 2021M4-L3: Executables

Disassembling Object Code

❖ Disassembled:

❖ Disassembler (objdump -d sum)

▪ Useful tool for examining object code (man 1 objdump)

▪ Analyzes bit pattern of series of instructions

▪ Produces approximate rendition of assembly code

▪ Can run on either a.out (complete executable) or .o file

15

0000000000400536 <sumstore>:

400536: 48 01 fe add %rdi,%rsi

400539: 48 89 32 mov %rsi,(%rdx)

40053c: c3 retq

CSE351, Winter 2021M4-L3: Executables

What Can be Disassembled?

❖ Anything that can be interpreted as executable code

❖ Disassembler examines bytes and attempts to reconstruct
assembly source

16

% objdump -d WINWORD.EXE

WINWORD.EXE: file format pei-i386

No symbols in "WINWORD.EXE".

Disassembly of section .text:

30001000 <.text>:

30001000: 55 push %ebp

30001001: 8b ec mov %esp,%ebp

30001003: 6a ff push $0xffffffff

30001005: 68 90 10 00 30 push $0x30001090

3000100a: 68 91 dc 4c 30 push $0x304cdc91

Reverse engineering forbidden by
Microsoft End User License Agreement

CSE351, Winter 2021M4-L3: Executables

Loader

❖ Input: executable binary program, command-line arguments
▪ ./a.out arg1 arg2

❖ Output: <program is run>

❖ Loader duties primarily handled by OS/kernel
▪ More about this when we learn about processes

❖ Memory sections (Instructions, Static Data, Stack) are set up

❖ Registers are initialized

17

