YW UNIVERSITY of WASHINGTON M4-L3: Executables CSE351, Winter 2021

Executables

CSE 351 Winter 2021

Instructor: Teaching Assistants:

Mark Wyse Kyrie Dowling Catherine Guevara lan Hsiao

Jim Limprasert Armin Magness Allie Pfleger
Cosmo Wang Ronald Widjaja

HOW ARE YOU DOING? YOUR PROTECTS TM GLAD YOURE INCLUDING MORE. | ALL THE FUNCTIONS YOU'VE WRITTEN

) HAH HAVE STAGNATED COMMENTS IN YOUR CODE, BUT IT | TRKE EVERYTHING PASSED To THEM

: BUT 1Y STARDEL) VALLEY | WOULD BE NICE IF THEY LERE | AND RETURN [T UNCHANGED WITH THE

YOU SEEM DISTANT \ T G UL | CONTENTS ABOUT YOUR CODE.. | COMENT "No, ¥ DERL LITH THIS*

LATELY. FOR THE " | ORAT LEAST A BIT'LESS TS5 A FUNCTIONAL PROGRAMIMING

PAST FEL HONTHS é@mﬂ}“‘rmwmm'gﬂf) MIW-HLLE& THING. AVOIDING SIDE. EFFECTS,
CAN'T IMAGINE LHY, '

) AT K LOOK, THEY SAY TO 'fDUHﬂDHLEFFEGEi

/ : MOSTLY FALSE. L,Rrrtmﬁnwnm ONLY UAY 0 BE SURE.

http://xkcd.com/1790/

http://xkcd.com/1790/

YW UNIVERSITY of WASHINGTON M4-L3: Executables CSE351, Winter 2021

Administrivia

% Lab 2 due Monday (2/8)
+» hw12 due Friday
%+ hw13 due next Wednesday (2/10)

" Based on the next two lectures, longer than normal

+» Remember: HW and readings due before lecture, at
11am PST on due date

YA UNIVERSITY of WASHINGTON M4-L3: Executables CSE351, Winter 2021

Roadmap

C: Java: Memory & data
Integers & floats

car *c = malloc(sizeof (car)):; Car ¢ = new Car();
c->miles = 100; c.setMiles (100) ; x86 assembly
c->gals = 17; c.setGals (17); Procedures & stacks
float mpg = get mpg(c); float mpg = Executables
free(c); c.getMPG () ; Arrays & structs
~S & Memory & caches
Assembly get_mpg: Processes
. pushg srbp .
language: movq srsp, $rbp Virtual memory
- Memory allocation
Popq srbp Java vs. C
ret *
Machine 0111010000011000 \/
de: 100011010000010000000010 A A
COode. 1000100111000010 ye
110000011111101000011111 Windows 10 0sx Yosemie s
i |
v \ 2
Computer

system:

YA UNIVERSITY of WASHINGTON M4-L3: Executables

Reading Review

+» Terminology:
"= CALL: compiler, assembler, linker, loader
= Object file: symbol table, relocation table
" Disassembly
®" Multidimensional arrays, row-major ordering
" Multilevel arrays

% Questions from the Reading?
= also post to Ed post!

CSE351, Winter 2021

YW UNIVERSITY of WASHINGTON M4-L3: Executables CSE351, Winter 2021

Building an Executable from a C File

P ey
N N
- Codeinfiles pl.c p2.c

- Compile with command: gcc -0g(pl.c p2.9 -0 P

= Put resulting machine code in file p

Run with command: . /p

text C program (pl.c p2.c) C A==
Compiler (gcc -0Og -9)
text Asm program ‘('pl .S p2.s)
Assembler (gcc -coras)
binary | Object program"(pl .0 p2.0) Static libraries (. a)
Linker (gcc or V
binary Executable })rogram (p)
| Loader (the OS) i

YW UNIVERSITY of WASHINGTON M4-L3: Executables CSE351, Winter 2021

Compiler

Input: Higher-level language code (e.qg., C, Java)

" foo.cC

L/
0‘0

)
0.0

Output: Assembly language code (e.g., x86, ARM, MIPS)

" foo.s
.) . . % \Y\LXI"‘Be
+ First there’s a preprocessor step to handle #directives
<
= Macro substitution, plus other specialty directives Lé‘k‘w

= |f curious/interested: http://tigcc.ticalc.org/doc/cpp.html

o

Super complex, whole courses devoted to these!

D)

>

Compiler optimizations
= “Level” of optimization specified by capital ‘O’ flag (e.g. —-Og, —03)

%

= QOptions: https://gcc.gnu.org/onlinedocs/gcc/Optimize-Options.html

http://tigcc.ticalc.org/doc/cpp.html
https://gcc.gnu.org/onlinedocs/gcc/Optimize-Options.html

YW UNIVERSITY of WASHINGTON M4-L3: Executables CSE351, Winter 2021

Compiling Into Assembly

« CCode (sum.c)

void sumstore (long x, long y, long *dest) {
long t = x + y;
~dest = t;

}

+ x86-64 assembly (gcc -Og —-S sum.c)

sumstore (long, long, long¥*) :

addq $rdi, %rsi
movq $rsi, (Srdx)
ret

Warning: You may get different results with other versions of
gcc and different compiler settings

YW UNIVERSITY of WASHINGTON M4-L3: Executables CSE351, Winter 2021

Assembler

+ Input: Assembly language code (e.g., x86, ARM, MIPS)

" foo.s
+ Output: Object files (e.g., ELF, COFF)
" foo.o

= Contains object code and information tables

+» Reads and uses assembly directives

" e.g., .text, .data, .quad

" x86: https://docs.oracle.com/cd/E26502 01/html/E28388/e0iyg.html
« Produces “machine language”

= Does its best, but object file is not a completed binary

Example: gcc -c foo.s

)
0‘0

https://docs.oracle.com/cd/E26502_01/html/E28388/eoiyg.html

YW UNIVERSITY of WASHINGTON M4-L3: Executables CSE351, Winter 2021

Producing Machine Language

+~ Simple cases: arithmetic and logical operations, shifts, etc.

= All necessary information is contained in the instruction itself

» What about the following?
= Conditional jump
= Accessing static data (e.g., global variable or jump table)
" call

+» Addresses and labels are problematic because the final
executable hasn’t been constructed yet!

= So how do we deal with these in the meantime?

CSE351, Winter 2021

YA UNIVERSITY of WASHINGTON M4-L3: Executables

Object File Information Tables

+» Symbol Table holds list of “items” that may be used by other

/ <
files ‘wvad € oewe™

= Non-local labels — function names for call
= Static Data — variables & literals that might be accessed across files

/lw‘hl.&' IV\A.J.A\\
Relocation Table holds list of “items” that this file needs the

address of later (currently undetermined)
= Any label or piece of static data referenced in an instruction in this file

- Both internal and external

+ Each file has its own symbol and relocation tables

10

YW UNIVERSITY of WASHINGTON M4-L3: Executables CSE351, Winter 2021

Object File Format

1) object file header: size and position of the other pieces of the
object file

2) text segment: the machine code — Mmshuhen s

3) data segment: data in the source file (binary) =« 3=, Leverds

4) relocation table: identifies lines of code that need to be
“handled”

5) symbol table: list of this file’s labels and data that can be
referenced

6) debugging information

» More info: ELF format
" http://www.skyfree.org/linux/references/ELF Format.pdf

11

http://www.skyfree.org/linux/references/ELF_Format.pdf

YW UNIVERSITY of WASHINGTON M4-L3: Executables CSE351, Winter 2021

Practice Questions

+» The following labels/symbols will show up in which
table(s) in the object file?

™~ N
= A (non-static) user-defined function ol & oo
(o, Pr.uw\’..sr\ lt-\"\“ﬁ

=" Alocal variable naiVaer

= Alibrary function recloccion +2bles

12

YW UNIVERSITY of WASHINGTON M4-L3: Executables CSE351, Winter 2021

Linker

+ Input: Object files (e.g., ELF, COFF)

" f00.0

)
0.0

Output: executable binary program

B a.out

+» Combines several object files into a single executable (/inking)
+» Enables separate compilation/assembling of files

= Changes to one file do not require recompiling of whole program

13

YW UNIVERSITY of WASHINGTON

Take text segment from each . o file and put them together

Take data segment from each . o file, put them together, and

M4-L3: Executables

CSE351, Winter 2021

concatenate this onto end of text segments

Linking

1)

2)

3) Resolve References

" Go through Relocation Table; handle each entry

object file 1
info 1

data 1
text 1

object file 2
info 2

data 2
text 2

a.out

Relocated data 1

Relocated data 2

Relocated text 1

Relocated text 2

14

YW UNIVERSITY of WASHINGTON M4-L3: Executables CSE351, Winter 2021

Disassembling Object Code

« Disassembled:

0000000000400536 <sumstore>:
400536: 48 01 fe add $rdi, $rsi
400539: 48 89 32 mov srsi, (Srdx)
40053c: c3 retq /
o0 (Wd , ~ ——
) b‘km \Vﬁ»‘ i "\—MM \ WAWM

+ Disassembler (objdump -d sum)
= Useful tool for examining object code (man 1 objdump)
= Analyzes bit pattern of series of instructions
" Produces approximate rendition of assembly code
®= Canrunon either a.out (complete executable) or . o file

15

YW UNIVERSITY of WASHINGTON M4-L3: Executables CSE351, Winter 2021

What Can be Disassembled?

S objdump -d WINWORD.EXE
WINWORD.EXE: file format pei-1386

No symbols 1n "WINWORD.EXE".
Disassembly of section .text:

30001000 <.text>:

30001000

30001001: : . _

30001003 Reverse engineering forbidden by
30001005: Microsoft End User License Agreement
3000100a:

+ Anything that can be interpreted as executable code

+ Disassembler examines bytes and attempts to reconstruct

assembly source
16

YW UNIVERSITY of WASHINGTON M4-L3: Executables CSE351, Winter 2021

Loader

+ Input: executable binary program, command-line arguments
= ./a.out argl arg?

+» Output: <program is run>

+» Loader duties primarily handled by OS/kernel

" More about this when we learn about processes
+» Memory sections (Instructions, Static Data, Stack) are set up
+ Registers are initialized

17

