Floating Point II CSE 351 Autumn 2020

Instructor:
Mark Wyse

Teaching Assistants:

Kyrie Dowling
Catherine Guevara
Ian Hsiao
Jim Limprasert
Armin Magness
Allie Pfleger
Cosmo Wang
Ronald Widjaja

http://www.smbc-comics.com/?id=2999

Administrivia

* hw6 due Friday, hw7 due Monday
* Lab 1b due Friday (1/22)
- Submit aisle_manager.c, store_client.c, and lab1Breflect.txt
* Section tomorrow on Integers and Floating Point
* Study Guide 1 released today, due Friday 1/29
- https://courses.cs.washington.edu/courses/cse351/21wi/guides/
- Task 1 -> group work allowed
- Tasks 2 and 3 -> individual

Reading Review

* Terminology:
- Special cases
- Denormalized numbers
- $\pm \infty$
- Not-a-Number (NaN)
- Limits of representation
- Overflow
- Underflow
- Rounding
* Questions from the Reading?

Review Questions

*What is the value of the following floats?

- 0x00000000
- 0xFF800000
* For the following code, what is the smallest value of n that will encounter a limit of representation?

```
float f = 1.0; // 2^0
for (int i = 0; i < n; ++i)
        f*= 1024; // 1024 = 2^10
printf("f = %f\n", f);
```


Floating Point Encoding Summary

\mathbf{E}	\mathbf{M}	Interpretation
0×00	0	± 0
0×00	non-zero	\pm denorm num
$0 \times 01-0 \times F E$	anything	\pm norm num
$0 \times F F$	0	$\pm \infty$
$0 \times F F$	non-zero	NaN

Special Cases

* But wait... what happened to zero?
- Special case: E and M all zeros $=0$
- Two zeros! But at least $0 \times 00000000=0$ like integers
* $\mathrm{E}=0 \times \mathrm{FF}, \mathrm{M}=0: \pm \infty$
- e.g., division by 0
- Still work in comparisons!
* $\mathrm{E}=0 \times \mathrm{FFF}, \mathrm{M} \neq 0$: Not a Number (NaN)
- e.g., square root of negative number, $0 / 0, \infty-\infty$
- NaN propagates through computations
- Value of M can be useful in debugging

New Representation Limits

* New largest value (besides ∞)?
- $\mathrm{E}=0 \times \mathrm{FF}$ has now been taken!
- $\mathrm{E}=0 \times \mathrm{FE}$ has largest: $1.1 \ldots 1_{2} \times 2^{127}=2^{128}-2^{104}$
* New numbers closest to 0:
- $\mathrm{E}=0 \times 00$ taken; next smallest is $\mathrm{E}=0 \times 01$
- $a=1.0 \ldots 0_{2} \times 2^{-126}=2^{-126}$
- $b=1.0 \ldots 01_{2} \times 2^{-126}=2^{-126}+2^{-149}$
- Normalization and implicit 1 are to blame
- Special case: $\mathrm{E}=0, \mathrm{M} \neq 0$ are denormalized numbers

Denorm Numbers

* Denormalized numbers
- No leading 1
- Uses implicit exponent of -126 even though $E=0 x 00$
* Denormalized numbers close the gap between zero and the smallest normalized number
- Smallest norm: $\pm 1.0 . . .0_{\text {two }} \times 2^{-126}= \pm 2^{-126}$
- Smallest denorm: $\pm 0.0 \ldots 01_{\mathrm{two}} \times 2^{-126}= \pm 2^{-149}$
- There is still a gap between zero and the smallest denormalized number

Floating Point Interpretation Flow Chart

\square = special case

Floating point topics

* Fractional binary numbers
* IEEE floating-point standard
* Floating-point operations and rounding
* Floating-point in C
* There are many more details that we won't cover
- It's a 58-page standard...

Tiny Floating Point Representation

* We will use the following 8-bit floating point representation to illustrate some key points:

* Assume that it has the same properties as IEEE floating point:
- bias =
- encoding of $-0=$
- encoding of $+\infty=$
- encoding of the largest (+) normalized \# =
- encoding of the smallest (+) normalized \# =

Distribution of Values

* What ranges are NOT representable?
- Between largest norm and infinity Overflow (Exp too large)
- Between zero and smallest denorm Underflow (Exp too small)
- Between norm numbers?

Rounding

* Given a FP number, what's the next largest representable number?
if $M=0 b 0 \ldots 00$, then $2^{\text {Exp }} \times 1.0$
- What is this "step" when Exp $=0$?
if $M=0 b 0 \ldots 01$, then $2^{\operatorname{Exp}} \times\left(1+2^{-23}\right)$ diff $=2^{\text {Exp-23 }}$
- What is this "step" when Exp $=100$?
* Distribution of values is denser toward zero

Floating Point Rounding

This is extra (non-testable) material

* The IEEE 754 standard actually specifies different rounding modes:
- Round to nearest, ties to nearest even digit
- Round toward $+\infty$ (round up)
- Round toward $-\infty$ (round down)
- Round toward 0 (truncation)
* In our tiny example:
- Man = 1.00101 rounded to $\mathrm{M}=0 \mathrm{0b001}$
- Man = 1.00111 rounded to $\mathrm{M}=0 \mathrm{Ob} 010$
- Man = 1.00110 rounded to $\mathrm{M}=0 \mathrm{Ob} 010$
- Man = 1.00010 rounded to $\mathrm{M}=0 \mathrm{Ob00}$

Floating Point Operations: Basic Idea

Value $=(-1)^{5} \times$ Mantissa $\times 2^{\text {Exponent }}$

S	E

$* x+_{f} y=\operatorname{Round}(x+y)$
$* x *_{f} y=\operatorname{Round}(x * y)$

* Basic idea for floating point operations:
- First, compute the exact result
- Then round the result to make it fit into the specified precision (width of M)
- Possibly over/underflow if exponent outside of range

Mathematical Properties of FP Operations

* Overflow yields $\pm \infty$ and underflow yields 0
* Floats with value $\pm \infty$ and NaN can be used in operations
- Result usually still $\pm \infty$ or NaN, but not always intuitive
* Floating point operations do not work like real math, due to rounding
■ Not associative: (3.14+1e100)-1e100 !=3.14+(1e100-1e100)
0
3.14
- Not distributive: $100 *(0.1+0.2) \quad!=100 * 0.1+100 * 0.2$

$$
30.000000000000003553
$$

- Not cumulative
- Repeatedly adding a very small number to a large one may do nothing

Floating Point Encoding Flow Chart

Limits of Interest

* The following thresholds will help give you a sense of when certain outcomes come into play, but don't worry about the specifics:
- FOver $=2^{\text {bias+1 }}=2^{8}$
- This is just larger than the largest representable normalized number
- FDenorm $=2^{1-\text { bias }}=2^{-6}$
- This is the smallest representable normalized number
- FUnder $=2^{1-\text { bias-m }}=2^{-9}$
- m is the width of the mantissa field
- This is the smallest representable denormalized number

Polling Question 1

* Using our 8-bit representation, what value gets stored when we try to encode $\mathbf{2 . 6 2 5}=2^{1}+2^{-1}+2^{-3}$?

S	E	M
1	4	3

A. +2.5
B. +2.625
C. +2.75
D. +3.25
E. We're lost...

Polling Question 2

* Using our 8-bit representation, what value gets stored when we try to encode $384=2^{8}+2^{7}$?

S	E	M
1	4	3

A. +256
B. +384
C. $+\infty$
D. NaN
E. We're lost...

Floating Point in C

* Two common levels of precision:

float	$1.0 f$	single precision (32-bit)
double	1.0	double precision (64-bit)

* \#include <math.h> to get INFINITY and NAN constants
* \#include <float.h> for additional constants
* Equality (==) comparisons between floating point numbers are tricky, and often return unexpected results, so just avoid them!

Floating Point Conversions in C

* Casting between int, float, and double changes the bit representation
- int \rightarrow float
- May be rounded (not enough bits in mantissa: 23)
- Overflow impossible
- int or float \rightarrow double
- Exact conversion (all 32-bit ints are representable)
- long \rightarrow double
- Depends on word size (32-bit is exact, 64-bit may be rounded)
- double or float \rightarrow int
- Truncates fractional part (rounded toward zero)
- "Not defined" when out of range or NaN: generally sets to TMin (even if the value is a very big positive)

Challenge Question

* We execute the following code in C. How many bytes are the same (value and position) between i and f ?
- No voting

```
int i = 384; // 2^8 + 2^7
float f = (float) i;
```

A. 0 bytes
B. 1 byte
C. 2 bytes
D. 3 bytes
E. We're lost...

Floating Point Summary

* Floats also suffer from the fixed number of bits available to represent them
- Can get overflow/underflow
- "Gaps" produced in representable numbers means we can lose precision, unlike ints
- Some "simple fractions" have no exact representation (e.g., 0.2)
- "Every operation gets a slightly wrong result"
* Floating point arithmetic not associative or distributive
- Mathematically equivalent ways of writing an expression may compute different results
* Never test floating point values for equality!
* Careful when converting between ints and floats!

Number Representation Really Matters

* 1991: Patriot missile targeting error
- clock skew due to conversion from integer to floating point
* 1996: Ariane 5 rocket exploded (\$1 billion)
- overflow converting 64-bit floating point to 16 -bit integer
* 2000: Y2K problem
- limited (decimal) representation: overflow, wrap-around
* 2038: Unix epoch rollover
- Unix epoch = seconds since 12am, January 1, 1970
- signed 32-bit integer representation rolls over to TMin in 2038
* Other related bugs:
- 1982: Vancouver Stock Exchange 10\% error in less than 2 years
- 1994: Intel Pentium FDIV (floating point division) HW bug (\$475 million)
- 1997: USS Yorktown "smart" warship stranded: divide by zero
- 1998: Mars Climate Orbiter crashed: unit mismatch (\$193 million)

Summary

\mathbf{E}	\mathbf{M}	Meaning
0×00	0	± 0
0×00	non-zero	\pm denorm num
$0 \times 01-0 \times F E$	anything	\pm norm num
$0 \times F F$	0	$\pm \infty$
$0 x F F$	non-zero	NaN

* Floating point encoding has many limitations
- Overflow, underflow, rounding
- Rounding is a HUGE issue due to limited mantissa bits and gaps that are scaled by the value of the exponent
- Floating point arithmetic is NOT associative or distributive
* Converting between integral and floating point data types does change the bits

An example that applies the IEEE Floating Point concepts to a smaller (8-bit) representation scheme. These slides expand on material covered today, so while you don't need to read these, the information is "fair game."

Tiny Floating Point Example

* 8-bit Floating Point Representation
- The sign bit is in the most significant bit (MSB)
- The next four bits are the exponent, with a bias of $2^{4-1}-1=7$
- The last three bits are the mantissa
* Same general form as IEEE Format
- Normalized binary scientific point notation
- Similar special cases for 0 , denormalized numbers, NaN, ∞

Dynamic Range (Positive Only)

	S	E	M	Exp	Value	
Denormalized numbers	0	0000	000	-6	0	closest to zero
	0	0000	001	-6	$1 / 8 * 1 / 64=1 / 512$	
	0	0000	010	-6	$2 / 8 * 1 / 64=2 / 512$	
	.					
	0	0000	110	-6	$6 / 8 * 1 / 64=6 / 512$	
	0	0000	111	-6	$7 / 8 * 1 / 64=7 / 512$	largest denorm
	0	0001	000	-6	$8 / 8 * 1 / 64=8 / 512$	smallest norm
	0	0001	001	-6	$9 / 8 * 1 / 64=9 / 512$	
	\cdots					
	0	0110	110	-1	14/8*1/2 $=14 / 16$	
	0	0110	111	-1	$15 / 8 * 1 / 2=15 / 16$	closest to 1 below
Normalized	0	0111	000	0	$8 / 8 * 1=1$	
numbers	0	0111	001	0	$9 / 8 * 1=9 / 8$	closest to 1 above
	0	0111	010	0	$10 / 8 * 1=10 / 8$	
	...					
	0	1110	110	7	$14 / 8 * 128=224$	
	0	1110	111	7	15/8*128 $=240$	largest norm
	0	1111	000	n / a	inf	

Special Properties of Encoding

* Floating point zero (0^{+}) exactly the same bits as integer zero
- All bits = 0
* Can (Almost) Use Unsigned Integer Comparison
- Must first compare sign bits
- Must consider $0^{-}=0^{+}=0$
- NaNs problematic
- Will be greater than any other values
- What should comparison yield?
- Otherwise OK
- Denorm vs. normalized
- Normalized vs. infinity

