Floating Point II
CSE 351 Autumn 2020

Instructor:
Mark Wyse

Teaching Assistants:
Kyrie Dowling
Catherine Guevara
Ian Hsiao
Jim Limprasert
Armin Magness
Allie Pfleger
Cosmo Wang
Ronald Widjaja

http://www.smbc-comics.com/?id=2999
Administrivia

❖ hw6 due Friday, hw7 due Monday

❖ Lab 1b due Friday (1/22)
 ▪ Submit aisle_manager.c, store_client.c, and lab1Breflect.txt

❖ Section tomorrow on Integers and Floating Point

❖ Study Guide 1 released today, due Friday 1/29
 ▪ Task 1 -> group work allowed
 ▪ Tasks 2 and 3 -> individual
Reading Review

❖ Terminology:
 - Special cases
 - Denormalized numbers
 - ±∞
 - Not-a-Number (NaN)
 - Limits of representation
 - Overflow
 - Underflow
 - Rounding

❖ Questions from the Reading?
Review Questions

❖ What is the value of the following floats?
 ▪ 0x00000000
 ▪ 0xFF800000

❖ For the following code, what is the smallest value of n that will encounter a limit of representation?

```c
float f = 1.0;  // 2^0
for (int i = 0; i < n; ++i)
    f *= 1024;  // 1024 = 2^10
printf("f = %f\n", f);
```
Floating Point Encoding Summary

<table>
<thead>
<tr>
<th>E</th>
<th>M</th>
<th>Interpretation</th>
</tr>
</thead>
<tbody>
<tr>
<td>0x00</td>
<td>0</td>
<td>± 0</td>
</tr>
<tr>
<td>0x00</td>
<td>non-zero</td>
<td>± denorm num</td>
</tr>
<tr>
<td>0x01 – 0xFE</td>
<td>anything</td>
<td>± norm num</td>
</tr>
<tr>
<td>0xFF</td>
<td>0</td>
<td>± ∞</td>
</tr>
<tr>
<td>0xFF</td>
<td>non-zero</td>
<td>NaN</td>
</tr>
</tbody>
</table>
Special Cases

❖ But wait... what happened to zero?
 - *Special case*: \(E \) and \(M \) all zeros = 0
 - Two zeros! But at least \(0x00000000 = 0 \) like integers

❖ \(E = 0xFF, M = 0 \): \(\pm \infty \)
 - *e.g.*, division by 0
 - Still work in comparisons!

❖ \(E = 0xFF, M \neq 0 \): Not a Number (\(NaN \))
 - *e.g.*, square root of negative number, 0/0, \(\infty - \infty \)
 - \(NaN \) propagates through computations
 - Value of \(M \) can be useful in debugging
New Representation Limits

- New largest value (besides ∞)?
 - $E = 0xFF$ has now been taken!
 - $E = 0xFE$ has largest: $1.1...1_2 \times 2^{127} = 2^{128} - 2^{104}$

- New numbers closest to 0:
 - $E = 0x00$ taken; next smallest is $E = 0x01$
 - $a = 1.0...0_2 \times 2^{-126} = 2^{-126}$
 - $b = 1.0...01_2 \times 2^{-126} = 2^{-126} + 2^{-149}$
 - Normalization and implicit 1 are to blame
 - *Special case*: $E = 0$, $M \neq 0$ are denormalized numbers
Denorm Numbers

- Denormalized numbers
 - No leading 1
 - Uses implicit exponent of -126 even though $E = 0x00$

- Denormalized numbers close the gap between zero and the smallest normalized number
 - Smallest norm: $\pm 1.0...0_{\text{two}} \times 2^{-126} = \pm 2^{-126}$
 - Smallest denorm: $\pm 0.0...01_{\text{two}} \times 2^{-126} = \pm 2^{-149}$
 - There is still a gap between zero and the smallest denormalized number

This is extra (non-testable) material
Floating Point Interpretation Flow Chart

FP Bits → What is the value of E?

- all 1’s → What is the value of M?
 - all 0’s → $(-1)^S \times \infty$
 - anything else → NaN

- anything else → ($-1)^S \times 0. M \times 2^{1-bias}$

- all 0’s → ($-1)^S \times 1. M \times 2^{E-bias}$

= special case
Floating point topics

- Fractional binary numbers
- IEEE floating-point standard
- Floating-point operations and rounding
- Floating-point in C

- There are many more details that we won’t cover
 - It’s a 58-page standard...
Tiny Floating Point Representation

❖ We will use the following 8-bit floating point representation to illustrate some key points:

Assume that it has the same properties as IEEE floating point:
- bias =
- encoding of $-0 =$
- encoding of $+\infty =$
- encoding of the largest (+) normalized # =
- encoding of the smallest (+) normalized # =
Distribution of Values

❖ What ranges are NOT representable?
 ▪ Between largest norm and infinity **Overflow** (Exp too large)
 ▪ Between zero and smallest denorm **Underflow** (Exp too small)
 ▪ Between norm numbers? **Rounding**

❖ Given a FP number, what’s the next largest representable number?
 ▪ What is this “step” when \(\text{Exp} = 0 \)?
 ▪ What is this “step” when \(\text{Exp} = 100 \)?
 if \(M = 0b0...00 \), then \(2^{\text{Exp}} \times 1.0 \)
 if \(M = 0b0...01 \), then \(2^{\text{Exp}} \times (1 + 2^{-23}) \)
 \[\text{diff} = 2^{\text{Exp} - 23} \]

❖ Distribution of values is denser toward zero

-15 -10 -5 0 5 10 15

- Denormalized ▲ Normalized ■ Infinity
Floating Point Rounding

❖ The IEEE 754 standard actually specifies different rounding modes:
 ▪ Round to nearest, ties to nearest even digit
 ▪ Round toward $+\infty$ (round up)
 ▪ Round toward $-\infty$ (round down)
 ▪ Round toward 0 (truncation)

❖ In our tiny example:
 ▪ Man = 1.001 01 rounded to $M = 0b001$
 ▪ Man = 1.001 11 rounded to $M = 0b010$
 ▪ Man = 1.001 10 rounded to $M = 0b010$
 ▪ Man = 1.000 10 rounded to $M = 0b000$
Floating Point Operations: Basic Idea

Value = \((-1)^s \times \text{Mantissa} \times 2^\text{Exponent}\)

\[\begin{array}{c|c|c} S & E & M \end{array} \]

- \(x +_f y = \text{Round}(x + y) \)
- \(x \times_f y = \text{Round}(x \times y) \)

- Basic idea for floating point operations:
 - First, **compute the exact result**
 - Then **round** the result to make it fit into the specified precision (width of M)
 - Possibly over/underflow if exponent outside of range
Mathematical Properties of FP Operations

- **Overflow** yields $\pm\infty$ and **underflow** yields 0
- **Floats with value $\pm\infty$ and NaN can be used in operations**
 - Result usually still $\pm\infty$ or NaN, but not always intuitive
- **Floating point operations do not work like real math, due to rounding**
 - Not associative: $(3.14+1e100)-1e100 \neq 3.14+(1e100-1e100)$
 - Not distributive: $100*(0.1+0.2) \neq 100*0.1+100*0.2$
 - Not cumulative
 - Repeatedly adding a very small number to a large one may do nothing
Floating Point Encoding Flow Chart

Value ν to encode

Is ν not a number? No

Yes

NaN
E = all 1’s
M ≠ all 0’s

Is $|\nu|$, when rounded, \geq FOver? No

Yes

$\pm\infty$
E = all 1’s
M = all 0’s

Is $|\nu|$, when rounded, \geq FUnder? No

Yes

Denormed
E = all 0’s
0. M = Man

Is $|\nu|$, when rounded, $< F\text{Denorm}$? No

Yes

Normed
E = Exp + bias
1. M = Man

= special case
Limits of Interest

❖ The following thresholds will help give you a sense of when certain outcomes come into play, but don’t worry about the specifics:

▪ **FOver** = \(2^{\text{bias} + 1} = 2^8\)
 - This is just larger than the largest representable normalized number

▪ **FDenorm** = \(2^{1 - \text{bias}} = 2^{-6}\)
 - This is the smallest representable normalized number

▪ **FUnder** = \(2^{1 - \text{bias} - m} = 2^{-9}\)
 - \(m\) is the width of the mantissa field
 - This is the smallest representable denormalized number
Polling Question 1

❖ Using our 8-bit representation, what value gets stored when we try to encode $2.625 = 2^1 + 2^{-1} + 2^{-3}$?

- A. $+ 2.5$
- B. $+ 2.625$
- C. $+ 2.75$
- D. $+ 3.25$
- E. We’re lost...
Polling Question 2

❖ Using our 8-bit representation, what value gets stored when we try to encode \(384 = 2^8 + 2^7 \)?

- A. +256
- B. +384
- C. +\(\infty \)
- D. NaN
- E. We’re lost…
Floating Point in C

❖ Two common levels of precision:
 float 1.0f single precision (32-bit)
 double 1.0 double precision (64-bit)

❖ #include <math.h> to get INFINITY and NAN constants

❖ #include <float.h> for additional constants

❖ Equality (==) comparisons between floating point numbers are tricky, and often return unexpected results, so just avoid them!
Floating Point Conversions in C

- Casting between int, float, and double changes the bit representation
 - int → float
 - May be rounded (not enough bits in mantissa: 23)
 - Overflow impossible
 - int or float → double
 - Exact conversion (all 32-bit ints are representable)
 - long → double
 - Depends on word size (32-bit is exact, 64-bit may be rounded)
 - double or float → int
 - Truncates fractional part (rounded toward zero)
 - “Not defined” when out of range or NaN: generally sets to TMin (even if the value is a very big positive)
Challenge Question

-we execute the following code in C. How many bytes are the same (value and position) between i and f?

-no voting

\[
\begin{align*}
\text{int } & i = 384; \quad // 2^8 + 2^7 \\
\text{float } & f = (float) i;
\end{align*}
\]

A. 0 bytes
B. 1 byte
C. 2 bytes
D. 3 bytes
E. We’re lost...
Floating Point Summary

❖ Floats also suffer from the fixed number of bits available to represent them
 ▪ Can get overflow/underflow
 ▪ “Gaps” produced in representable numbers means we can lose precision, unlike ints
 • Some “simple fractions” have no exact representation (e.g., 0.2)
 • “Every operation gets a slightly wrong result”

❖ Floating point arithmetic not associative or distributive
 ▪ Mathematically equivalent ways of writing an expression may compute different results

❖ Never test floating point values for equality!
❖ Careful when converting between ints and floats!
Number Representation Really Matters

- **1991**: Patriot missile targeting error
 - clock skew due to conversion from integer to floating point

- **1996**: Ariane 5 rocket exploded ($1 billion)
 - overflow converting 64-bit floating point to 16-bit integer

- **2000**: Y2K problem
 - limited (decimal) representation: overflow, wrap-around

- **2038**: Unix epoch rollover
 - Unix epoch = seconds since 12am, January 1, 1970
 - signed 32-bit integer representation rolls over to TMin in 2038

- **Other related bugs:**
 - 1982: Vancouver Stock Exchange 10% error in less than 2 years
 - 1994: Intel Pentium FDIV (floating point division) HW bug ($475 million)
 - 1997: USS Yorktown “smart” warship stranded: divide by zero
 - 1998: Mars Climate Orbiter crashed: unit mismatch ($193 million)
Summary

Floating point encoding has many limitations
- Overflow, underflow, rounding
- Rounding is a HUGE issue due to limited mantissa bits and gaps that are scaled by the value of the exponent
- Floating point arithmetic is NOT associative or distributive

Converting between integral and floating point data types does change the bits

<table>
<thead>
<tr>
<th>E</th>
<th>M</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>0x00</td>
<td>0</td>
<td>± 0</td>
</tr>
<tr>
<td>0x00</td>
<td>non-zero</td>
<td>± denorm num</td>
</tr>
<tr>
<td>0x01 – 0xFE</td>
<td>anything</td>
<td>± norm num</td>
</tr>
<tr>
<td>0xFF</td>
<td>0</td>
<td>± ∞</td>
</tr>
<tr>
<td>0xFF</td>
<td>non-zero</td>
<td>NaN</td>
</tr>
</tbody>
</table>
An example that applies the IEEE Floating Point concepts to a smaller (8-bit) representation scheme. These slides expand on material covered today, so while you don’t need to read these, the information is “fair game.”
Tiny Floating Point Example

❖ 8-bit Floating Point Representation
 ▪ The sign bit is in the most significant bit (MSB)
 ▪ The next four bits are the exponent, with a bias of $2^{4-1} - 1 = 7$
 ▪ The last three bits are the mantissa

❖ Same general form as IEEE Format
 ▪ Normalized binary scientific point notation
 ▪ Similar special cases for 0, denormalized numbers, NaN, ∞
Dynamic Range (Positive Only)

<table>
<thead>
<tr>
<th>S</th>
<th>E</th>
<th>M</th>
<th>Exp</th>
<th>Value</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>-6</td>
<td>0</td>
<td>closest to zero</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>-6</td>
<td>1/8*1/64 = 1/512</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>-6</td>
<td>2/8*1/64 = 2/512</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>largest denorm</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>smallest norm</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>-6</td>
<td>6/8*1/64 = 6/512</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>-6</td>
<td>7/8*1/64 = 7/512</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>-6</td>
<td>8/8*1/64 = 8/512</td>
<td>closest to 1 below</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>-6</td>
<td>9/8*1/64 = 9/512</td>
<td>closest to 1 above</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>-1</td>
<td>14/8*1/2 = 14/16</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>-1</td>
<td>15/8*1/2 = 15/16</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>8/8*1 = 1</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>9/8*1 = 9/8</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>10/8*1 = 10/8</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>14/8*128 = 224</td>
<td>largest norm</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>15/8*128 = 240</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>n/a</td>
<td>inf</td>
<td></td>
</tr>
</tbody>
</table>

Denormalized numbers: Numbers that are too small to be represented in the normalized format.

Normalized numbers: Numbers that are in the normalized format.
Special Properties of Encoding

❖ Floating point zero (0^+) exactly the same bits as integer zero
 ▪ All bits = 0

❖ Can (Almost) Use Unsigned Integer Comparison
 ▪ Must first compare sign bits
 ▪ Must consider $0^- = 0^+ = 0$
 ▪ NaNs problematic
 • Will be greater than any other values
 • What should comparison yield?
 ▪ Otherwise OK
 • Denorm vs. normalized
 • Normalized vs. infinity