
CSE351, Winter 2021M2-L4: Floating Point II

Floating Point II
CSE 351 Autumn 2020

Instructor:

Mark Wyse

Teaching Assistants:

Kyrie Dowling

Catherine Guevara

Ian Hsiao

Jim Limprasert

Armin Magness

Allie Pfleger

Cosmo Wang

Ronald Widjaja

http://www.smbc-comics.com/?id=2999

http://www.smbc-comics.com/?id=2999

CSE351, Winter 2021M2-L4: Floating Point II

Administrivia

❖ hw6 due Friday, hw7 due Monday

❖ Lab 1b due Friday (1/22)
▪ Submit aisle_manager.c, store_client.c, and
lab1Breflect.txt

❖ Section tomorrow on Integers and Floating Point

❖ Study Guide 1 released today, due Friday 1/29
▪ https://courses.cs.washington.edu/courses/cse351/21wi/guides/

▪ Task 1 -> group work allowed

▪ Tasks 2 and 3 -> individual

2

https://courses.cs.washington.edu/courses/cse351/21wi/guides/

CSE351, Winter 2021M2-L4: Floating Point II

Reading Review

❖ Terminology:

▪ Special cases
• Denormalized numbers

• ±∞

• Not-a-Number (NaN)

▪ Limits of representation
• Overflow

• Underflow

• Rounding

❖ Questions from the Reading?

3

CSE351, Winter 2021M2-L4: Floating Point II

Review Questions

❖ What is the value of the following floats?

▪ 0x00000000

▪ 0xFF800000

❖ For the following code, what is the smallest value of n
that will encounter a limit of representation?

float f = 1.0; // 2^0

for (int i = 0; i < n; ++i)
f *= 1024; // 1024 = 2^10

printf("f = %f\n", f);

4

CSE351, Winter 2021M2-L4: Floating Point II

Floating Point Encoding Summary

E M Interpretation

0x00 0 ± 0

0x00 non-zero ± denorm num

0x01 – 0xFE anything ± norm num

0xFF 0 ± ∞

0xFF non-zero NaN

CSE351, Winter 2021M2-L4: Floating Point II

Special Cases

❖ But wait… what happened to zero?

▪ Special case: E and M all zeros = 0

▪ Two zeros! But at least 0x00000000 = 0 like integers

❖ E = 0xFF, M = 0: ± ∞

▪ e.g., division by 0

▪ Still work in comparisons!

❖ E = 0xFF, M ≠ 0: Not a Number (NaN)

▪ e.g., square root of negative number, 0/0, ∞–∞

▪ NaN propagates through computations

▪ Value of M can be useful in debugging

6

CSE351, Winter 2021M2-L4: Floating Point II

New Representation Limits

❖ New largest value (besides ∞)?

▪ E = 0xFF has now been taken!

▪ E = 0xFE has largest: 1.1…12×2127 = 2128 – 2104

❖ New numbers closest to 0:

▪ E = 0x00 taken; next smallest is E = 0x01

▪ a = 1.0…02×2-126 = 2-126

▪ b = 1.0…012×2-126 = 2-126 + 2-149

▪ Normalization and implicit 1 are to blame

▪ Special case: E = 0, M ≠ 0 are denormalized numbers

7

0
+∞-∞

Gaps!

a

b

CSE351, Winter 2021M2-L4: Floating Point II

Denorm Numbers

❖ Denormalized numbers

▪ No leading 1

▪ Uses implicit exponent of –126 even though E = 0x00

❖ Denormalized numbers close the gap between zero
and the smallest normalized number

▪ Smallest norm: ± 1.0…0two×2-126 = ± 2-126

▪ Smallest denorm: ± 0.0…01two×2-126 = ± 2-149

• There is still a gap between zero and the smallest denormalized
number

8

So much
closer to 0

This is extra
(non-testable)

material

CSE351, Winter 2021M2-L4: Floating Point II

Floating Point Interpretation Flow Chart

9

FP Bits
What is the
value of E?

What is the
value of M?

−1 S ×∞

NaN

−1 S × 0.M × 21−bias

−1 S × 1.M × 2E−bias

all 1’s

all 0’s

anything else

anything
else

all 0’s

= special case

CSE351, Winter 2021M2-L4: Floating Point II

Floating point topics

❖ Fractional binary numbers

❖ IEEE floating-point standard

❖ Floating-point operations and rounding

❖ Floating-point in C

❖ There are many more details that we won’t cover

▪ It’s a 58-page standard…
10

CSE351, Winter 2021M2-L4: Floating Point II

Tiny Floating Point Representation

❖ We will use the following 8-bit floating point
representation to illustrate some key points:

❖ Assume that it has the same properties as IEEE
floating point:

▪ bias =

▪ encoding of −0 =

▪ encoding of +∞ =

▪ encoding of the largest (+) normalized # =

▪ encoding of the smallest (+) normalized # =

11

S E M

1 4 3

CSE351, Winter 2021M2-L4: Floating Point II

Distribution of Values

❖ What ranges are NOT representable?

▪ Between largest norm and infinity

▪ Between zero and smallest denorm

▪ Between norm numbers?

❖ Given a FP number, what’s the next largest
representable number?

▪ What is this “step” when Exp = 0?

▪ What is this “step” when Exp = 100?

❖ Distribution of values is denser toward zero

12

-15 -10 -5 0 5 10 15
Denormalized Normalized Infinity

Overflow (Exp too large)

Underflow (Exp too small)

Rounding

if M = 0b0…00, then 2Exp x 1.0
if M = 0b0…01, then 2Exp x (1 + 2-23)

diff = 2Exp-23

CSE351, Winter 2021M2-L4: Floating Point II

Floating Point Rounding

❖ The IEEE 754 standard actually specifies different
rounding modes:

▪ Round to nearest, ties to nearest even digit

▪ Round toward +∞ (round up)

▪ Round toward −∞ (round down)

▪ Round toward 0 (truncation)

❖ In our tiny example:

▪ Man = 1.001 01 rounded to M = 0b001

▪ Man = 1.001 11 rounded to M = 0b010

▪ Man = 1.001 10 rounded to M = 0b010

▪ Man = 1.000 10 rounded to M = 0b000
13

This is extra
(non-testable)

material

S E M

1 4 3

CSE351, Winter 2021M2-L4: Floating Point II

Floating Point Operations: Basic Idea

❖ x +f y = Round(x + y)

❖ x *f y = Round(x * y)

❖ Basic idea for floating point operations:

▪ First, compute the exact result

▪ Then round the result to make it fit into the specified
precision (width of M)
• Possibly over/underflow if exponent outside of range

14

S E M

Value = (-1)S×Mantissa×2Exponent

CSE351, Winter 2021M2-L4: Floating Point II

Mathematical Properties of FP Operations

❖ Overflow yields ±∞ and underflow yields 0

❖ Floats with value ±∞ and NaN can be used in
operations

▪ Result usually still ±∞ or NaN, but not always intuitive

❖ Floating point operations do not work like real math,
due to rounding

▪ Not associative: (3.14+1e100)–1e100 != 3.14+(1e100–1e100)
0 3.14

▪ Not distributive: 100*(0.1+0.2) != 100*0.1+100*0.2

30.000000000000003553 30

▪ Not cumulative
• Repeatedly adding a very small number to a large one may do nothing

15

CSE351, Winter 2021M2-L4: Floating Point II

Floating Point Encoding Flow Chart

16

= special case

Value 𝑣 to
encode

Is 𝑣 not a
number?

±∞
E = all 1’s
M = all 0’s

NaN
E = all 1’s
M ≠ all 0’s

Yes

Is 𝑣 , when
rounded,
≥ FOver?

Is 𝑣 , when
rounded,

< FDenorm?

Is 𝑣 , when
rounded,
< FUnder?

No

Yes

Normed
E = Exp + bias
1.M = Man

No

Yes

Denormed
E = all 0’s
0.M = Man

±0
E = all 0’s
M = all 0’s

Yes

No

No

CSE351, Winter 2021M2-L4: Floating Point II

Limits of Interest

❖ The following thresholds will help give you a sense of
when certain outcomes come into play, but don’t
worry about the specifics:

▪ FOver = 2bias+1 = 28

• This is just larger than the largest representable normalized number

▪ FDenorm = 21−bias = 2−6

• This is the smallest representable normalized number

▪ FUnder = 21−bias−𝑚 = 2−9

• 𝑚 is the width of the mantissa field

• This is the smallest representable denormalized number

17

This is extra
(non-testable)

material

CSE351, Winter 2021M2-L4: Floating Point II

Polling Question 1

❖ Using our 8-bit representation, what value gets
stored when we try to encode 2.625 = 21 + 2-1 + 2-3?

A. + 2.5

B. + 2.625

C. + 2.75

D. + 3.25

E. We’re lost…

18

S E M

1 4 3

CSE351, Winter 2021M2-L4: Floating Point II

Polling Question 2

❖ Using our 8-bit representation, what value gets
stored when we try to encode 384 = 28 + 27?

A. + 256

B. + 384

C. + ∞

D. NaN

E. We’re lost…

19

S E M

1 4 3

CSE351, Winter 2021M2-L4: Floating Point II

Floating Point in C

❖ Two common levels of precision:
float 1.0f single precision (32-bit)

double 1.0 double precision (64-bit)

❖ #include <math.h> to get INFINITY and NAN
constants

❖ #include <float.h> for additional constants

❖ Equality (==) comparisons between floating point
numbers are tricky, and often return unexpected
results, so just avoid them!

20

!!!

CSE351, Winter 2021M2-L4: Floating Point II

Floating Point Conversions in C

❖ Casting between int, float, and double changes the
bit representation

▪ int → float
• May be rounded (not enough bits in mantissa: 23)

• Overflow impossible

▪ int or float → double
• Exact conversion (all 32-bit ints are representable)

▪ long → double
• Depends on word size (32-bit is exact, 64-bit may be rounded)

▪ double or float → int
• Truncates fractional part (rounded toward zero)

• “Not defined” when out of range or NaN: generally sets to TMin
(even if the value is a very big positive)

21

!!!

CSE351, Winter 2021M2-L4: Floating Point II

Challenge Question

❖ We execute the following code in C. How many bytes
are the same (value and position) between i and f?

▪ No voting

A. 0 bytes

B. 1 byte

C. 2 bytes

D. 3 bytes

E. We’re lost…

22

int i = 384; // 2^8 + 2^7
float f = (float) i;

CSE351, Winter 2021M2-L4: Floating Point II

Floating Point Summary

❖ Floats also suffer from the fixed number of bits
available to represent them
▪ Can get overflow/underflow

▪ “Gaps” produced in representable numbers means we can
lose precision, unlike ints
• Some “simple fractions” have no exact representation (e.g., 0.2)

• “Every operation gets a slightly wrong result”

❖ Floating point arithmetic not associative or
distributive
▪ Mathematically equivalent ways of writing an expression

may compute different results

❖ Never test floating point values for equality!

❖ Careful when converting between ints and floats!
23

CSE351, Winter 2021M2-L4: Floating Point II

Number Representation Really Matters

❖ 1991: Patriot missile targeting error
▪ clock skew due to conversion from integer to floating point

❖ 1996: Ariane 5 rocket exploded ($1 billion)
▪ overflow converting 64-bit floating point to 16-bit integer

❖ 2000: Y2K problem
▪ limited (decimal) representation: overflow, wrap-around

❖ 2038: Unix epoch rollover
▪ Unix epoch = seconds since 12am, January 1, 1970

▪ signed 32-bit integer representation rolls over to TMin in 2038

❖ Other related bugs:
▪ 1982: Vancouver Stock Exchange 10% error in less than 2 years

▪ 1994: Intel Pentium FDIV (floating point division) HW bug ($475 million)

▪ 1997: USS Yorktown “smart” warship stranded: divide by zero

▪ 1998: Mars Climate Orbiter crashed: unit mismatch ($193 million)
24

CSE351, Winter 2021M2-L4: Floating Point II

Summary

❖ Floating point encoding has many limitations

▪ Overflow, underflow, rounding

▪ Rounding is a HUGE issue due to limited mantissa bits and
gaps that are scaled by the value of the exponent

▪ Floating point arithmetic is NOT associative or distributive

❖ Converting between integral and floating point data
types does change the bits

25

E M Meaning
0x00 0 ± 0
0x00 non-zero ± denorm num

0x01 – 0xFE anything ± norm num
0xFF 0 ± ∞
0xFF non-zero NaN

CSE351, Winter 2021M2-L4: Floating Point II

An example that applies the IEEE Floating Point
concepts to a smaller (8-bit) representation scheme.
These slides expand on material covered today, so
while you don’t need to read these, the information is
“fair game.”

26

CSE351, Winter 2021M2-L4: Floating Point II

Tiny Floating Point Example

❖ 8-bit Floating Point Representation

▪ The sign bit is in the most significant bit (MSB)

▪ The next four bits are the exponent, with a bias of 24-1–1 = 7

▪ The last three bits are the mantissa

❖ Same general form as IEEE Format

▪ Normalized binary scientific point notation

▪ Similar special cases for 0, denormalized numbers, NaN, ∞

27

S E M

1 4 3

CSE351, Winter 2021M2-L4: Floating Point II

Dynamic Range (Positive Only)

28

S E M Exp Value

0 0000 000 -6 0

0 0000 001 -6 1/8*1/64 = 1/512

0 0000 010 -6 2/8*1/64 = 2/512

…

0 0000 110 -6 6/8*1/64 = 6/512

0 0000 111 -6 7/8*1/64 = 7/512

0 0001 000 -6 8/8*1/64 = 8/512

0 0001 001 -6 9/8*1/64 = 9/512

…

0 0110 110 -1 14/8*1/2 = 14/16

0 0110 111 -1 15/8*1/2 = 15/16

0 0111 000 0 8/8*1 = 1

0 0111 001 0 9/8*1 = 9/8

0 0111 010 0 10/8*1 = 10/8

…

0 1110 110 7 14/8*128 = 224

0 1110 111 7 15/8*128 = 240

0 1111 000 n/a inf

closest to zero

largest denorm
smallest norm

closest to 1 below

closest to 1 above

largest norm

Denormalized
numbers

Normalized
numbers

CSE351, Winter 2021M2-L4: Floating Point II

Special Properties of Encoding

❖ Floating point zero (0+) exactly the same bits as integer zero
▪ All bits = 0

❖ Can (Almost) Use Unsigned Integer Comparison
▪ Must first compare sign bits

▪ Must consider 0- = 0+ = 0

▪ NaNs problematic

• Will be greater than any other values

• What should comparison yield?

▪ Otherwise OK

• Denorm vs. normalized

• Normalized vs. infinity

29

