Integers II
 CSE 351 Winter 2021

| Instructor: | Teaching Assistants: | |
| :--- | :--- | :--- | :--- |
| Mark Wyse | Kyrie Dowling | Catherine Guevara Ian Hsiao |
| | Jim Limprasert | Armin Magness Allie Pfleger |
| | Cosmo Wang | Ronald Widjaja |

http://xkcd.com/571/

Administrivia

* hw4 due $1 / 15$, hw5 due $1 / 20$
* Lab 1a due Friday $1 / 15$
- Submit pointer.c and lab1Areflect.txt to Gradescope
* Lab 1b released Friday, due 1/22
- Bit manipulation on a custom number representation
- Bonus slides at the end of today's lecture have relevant examples

Runnable Code Snippets on Ed

* Ed allows you to embed runnable code snippets (e.g., readings, homework, discussion)
- These are editable and rerunnable!
- Hide compiler warnings, but will show compiler errors and runtime errors
* Suggested use
- Good for experimental questions about basic behaviors in C
- NOT entirely consistent with the CSE Linux environment, so should not be used for any lab-related work

Reading Review

* Terminology:
- UMin, UMax, TMin, TMax
- Type casting: implicit vs. explicit
- Integer extension: zero extension vs. sign extension
- Modular arithmetic and arithmetic overflow
- Bit shifting: left shift, logical right shift, arithmetic right shift
* Questions from the Reading?

Review Questions

* What is the value (and encoding) of TMin for a fictional 6-bit wide integer data type?
* For unsigned char uc = 0xA1; what are the produced data for the cast (short) uc?
*What is the result of the following expressions?
- (signed char)uc >> 2
- (unsigned char)uc >> 3

Why Does Two's Complement Work?

* For all representable positive integers x, we want:
bit representation of x
+ bit representation of $-x$
(ignoring the carry-out bit)
- What are the 8 -bit negative encodings for the following?

0000001
$+\quad$????????
00000000

Why Does Two's Complement Work?

* For all representable positive integers x, we want:
bit representation of x
+ bit representation of $-x$
(ignoring the carry-out bit)
- What are the 8 -bit negative encodings for the following?

00000001
$+\quad 11111111$
100000000
---:
$+\quad 11111110$
100000000
---:
$+\quad 00111101$
100000000

These are the bitwise complement plus 1!

$$
-x==\sim x+1
$$

Integers

* Binary representation of integers
- Unsigned and signed
- Casting in C
* Consequences of finite width representations
- Sign extension, overflow
* Shifting and arithmetic operations

Signed/Unsigned Conversion Visualized

* Two's Complement \rightarrow Unsigned
- Ordering Inversion
- Negative \rightarrow Big Positive

Values To Remember

* Unsigned Values

```
- UMin = 0b00... 0
\[
=0
\]
- UMax = 0b11...1
\[
=\quad 2^{w}-1
\]
```

* Two's Complement Values
- TMin = 0b10...0
$=-2^{w-1}$
- TMax = 0b01... 1
$=2^{w-1}-1$
- $-1=0.611 \ldots 1$
* Example: Values for $w=64$

In C: Signed vs. Unsigned

* Casting
- Bits are unchanged, just interpreted differently!
- int tx, ty;
- unsigned int ux, uy;
- Explicit casting
- tx = (int) ux;
- uy = (unsigned int) ty;
- Implicit casting can occur during assignments or function calls
- tx = ux;
- uy = ty;

Casting Surprises

* Integer literals (constants)
- By default, integer constants are considered signed integers
- Hex constants already have an explicit binary representation
- Use "U" (or "u") suffix to explicitly force unsigned
- Examples: OU, 4294967259u
* Expression Evaluation
- When you mixed unsigned and signed in a single expression, then signed values are implicitly cast to unsigned
- Including comparison operators $<,>,==,<=,>=$

Practice Question 1

* Assuming 8-bit data (i.e., bit position 7 is the MSB), what will the following expression evaluate to?
- $\operatorname{UMin}=0, \operatorname{UMax}=255, \mathrm{TMin}=-128, \mathrm{TMax}=127$
* 127 < (signed char) 128 u

Integers

* Binary representation of integers
- Unsigned and signed
- Casting in C
* Consequences of finite width representations
- Sign extension, overflow
* Shifting and arithmetic operations

Sign Extension

* Task: Given a w-bit signed integer X, convert it to $w^{+} k$-bit signed integer X^{\prime} with the same value
* Rule: Add k copies of sign bit
- Let x_{i} be the i-th digit of X in binary

■ $\mathrm{X}^{\prime}=\underbrace{x_{w-1}, \ldots, x_{w-1}}_{k \text { copies of MSB }}, \underbrace{x_{w-1}, x_{w-2}, \ldots, x_{1}, x_{0}}_{\text {original } \mathrm{X}}$

Two's Complement Arithmetic

* The same addition procedure works for both unsigned and two's complement integers
- Simplifies hardware: only one algorithm for addition
- Algorithm: simple addition, discard the highest carry bit
- Called modular addition: result is sum modulo 2^{w}

Arithmetic Overflow

Bits	Unsigned	Signed
0000	0	0
0001	1	1
0010	2	2
0011	3	3
0100	4	4
0101	5	5
0110	6	6
0111	7	7
1000	8	-8
1001	9	-7
1010	10	-6
1011	11	-5
1100	12	-4
1101	13	-3
1110	14	-2
1111	15	-1

* When a calculation produces a result that can't be represented in the current encoding scheme
- Integer range limited by fixed width
- Can occur in both the positive and negative directions
* C and Java ignore overflow exceptions
- You end up with a bad value in your program and no warning/indication... oops!

Overflow: Unsigned

* Addition: drop carry bit $\left(-2^{\mathrm{N}}\right)$

* Subtraction: borrow $\left(+2^{\mathrm{N}}\right)$

$$
\begin{array}{rrr}
1 \\
-\quad 2 \\
\begin{array}{c}
-1
\end{array} & \begin{array}{r}
10001 \\
15
\end{array} & \begin{array}{c}
\pm 2^{\mathrm{N}} \text { because of } \\
\text { modular arithmetic }
\end{array}
\end{array}
$$

Overflow: Two's Complement

* Addition: $(+)+(+)=(-)$ result?

6
$+\quad 3$
8
-7
---:
1001

* Subtraction: $(-)+(-)=(+)$?

$$
\begin{array}{r}
-7 \\
-\quad 3 \\
\hline-10
\end{array} \quad \begin{array}{r}
1001 \\
-\quad 0011 \\
\hline 0110
\end{array}
$$

For signed: overflow if operands have same sign and result's sign is different

Practice Questions 2

* Assuming 8-bit integers:
- $0 \times 27=39$ (signed) $=39$ (unsigned)
- $0 \times D 9=-39$ (signed) $=217$ (unsigned)
- $0 \times 7 \mathrm{~F}=127$ (signed) $=127$ (unsigned)
- $0 \times 81=-127$ (signed) $=129$ (unsigned)
* For the following additions, did signed and/or unsigned overflow occur?
- 0x27 + 0x81
- 0x7F + 0xD9

Integers

* Binary representation of integers
- Unsigned and signed
- Casting in C
* Consequences of finite width representations
- Sign extension, overflow
* Shifting and arithmetic operations

Shift Operations

* Throw away (drop) extra bits that "fall off" the end
* Left shift ($\mathrm{x} \ll \mathrm{n}$) bit vector x by n positions
- Fill with 0 's on right
* Right shift ($x \gg n$) bit-vector x by n positions
- Logical shift (for unsigned values)
- Fill with 0's on left
- Arithmetic shift (for signed values)
- Replicate most significant bit on left (maintains sign of x)

	X	0010	0010
	$x \ll 3$	0001	0000
logical:	$x \gg 2$	0000	1000
arithmetic:	$x \gg 2$	0000	1000

	X	1010	0010
	$x \ll 3$	0001	0000
logical:	$x \gg 2$	0010	1000
arithmetic:	$x \gg 2$	1110	1000

Shift Operations

* Arithmetic:
- Left shift $(x \ll n)$ is equivalent to multiply by 2^{n}
- Right shift $(x \gg n)$ is equivalent to divide by 2^{n}
- Shifting is faster than general multiply and divide operations!
* Notes:
- Shifts by $n<0$ or $n \geq w$ (w is bit width of x) are undefined
- In C: behavior of >> is determined by the compiler
- In gcc / C lang, depends on data type of x (signed/unsigned)
- In Java: logical shift is >>> and arithmetic shift is >>

Left Shifting Arithmetic 8-bit Example

* No difference in left shift operation for unsigned and signed numbers (just manipulates bits)
- Difference comes during interpretation: $\quad x * 2 n$?

Right Shifting Arithmetic 8-bit Examples

* Reminder: C operator >> does logical shift on unsigned values and arithmetic shift on signed values - Logical Shift: $\mathrm{x} / 2^{\text {n }}$?

Right Shifting Arithmetic 8-bit Examples

* Reminder: C operator >> does logical shift on unsigned values and arithmetic shift on signed values - Arithmetic Shift: $\mathrm{x} / 2^{\text {n }}$?

$$
\begin{array}{lll}
\mathrm{xs}=-16 ; & 11110000 & =-16 \\
\mathrm{R} 1 \mathrm{~s}=\mathrm{xs} \gg 3 ; & 11111110000= & =-2 \\
\mathrm{R} 2 \mathrm{~S}=\mathrm{xs} \gg 5 ; & 1111111110000= & -1
\end{array}
$$

Challenge Questions

For the following expressions, find a value of signed char x, if there exists one, that makes the expression True.

* Assume we are using 8-bit arithmetic:

Example
All Solutions

- x >= 128U	
- x ! $=(\mathrm{x} \gg 2) \ll 2$	
- $\mathrm{x}=-\mathrm{x}$ - Hint: there are two solutions	
- ($\mathrm{x}<128 \mathrm{U})$ \& \& ($\mathrm{x}>0 \mathrm{x} 3 \mathrm{~F})$	

Summary

* Sign and unsigned variables in C
- Bit pattern remains the same, just interpreted differently
- Strange things can happen with our arithmetic when we convert/cast between sign and unsigned numbers
- Type of variables affects behavior of operators (shifting, comparison)
* We can only represent so many numbers in w bits
- When we exceed the limits, arithmetic overflow occurs
- Sign extension tries to preserve value when expanding
* Shifting is a useful bitwise operator
- Right shifting can be arithmetic (sign) or logical (0)
- Can be used in multiplication with constant or bit masking

Some examples of using shift operators in combination with bitmasks, which you may find helpful for Lab 1 b.

* Extract the $2^{\text {nd }}$ most significant byte of an int
* Extract the sign bit of a signed int
* Conditionals as Boolean expressions

Using Shifts and Masks

* Extract the $2^{\text {nd }}$ most significant byte of an int:
- First shift, then mask: ($x \gg 16$) \& $0 x F F$

| \mathbf{x} | 0000000100000010 | 0000001100000100 |
| :---: | :---: | :---: | :---: |
| $\mathbf{x \gg 1 6}$ | 000000000000000000000001 个 00000010 | |
| $0 \times F F$ | 00000000000000000000000011111111 | |
| $(\mathbf{x \gg 1 6) \& ~ 0 x F F}$ | 00000000000000000000000000000010 | |

- Or first mask, then shift: (x \& 0xFF0000) >>16

\mathbf{x}	00000001	00000010	00000011	0000100
0xFF0000	00000000	1111111	00000000	0000000
x \& 0xFF0000	00000000	00000010	00000000	0000000
(x\&0xFF0000) >>16	00000000	0000000	0000000	0000010

Using Shifts and Masks

* Extract the sign bit of a signed int:
- First shift, then mask: ($x \gg 31$) \& $0 x 1$
- Assuming arithmetic shift here, but this works in either case
- Need mask to clear 1s possibly shifted in

\mathbf{x}	00000001000000100000001100000100
$\mathbf{x \gg 3 1}$	00000000000000000000000000000090
0×1	00000000000000000000000000000001
$(x \gg 31) \& 0 \times 1$	00000000000000000000000000000000

| \mathbf{x} | $10000001 \quad 00000010 \quad 00000011 \quad 00000100$ |
| :---: | :---: | :---: | :---: |
| $\mathbf{x \gg 3 1}$ | $111111111111111111111111 \quad 11111111$ |
| 0×1 | 00000000000000000000000000000001 |
| $\mathbf{(x \gg 3 1) \& 0 x 1}$ | 00000000000000000000000000000001 |

Using Shifts and Masks

* Conditionals as Boolean expressions
- For int x, what does $(x \ll 31) \gg 31$ do?

$\mathbf{x}=!!123$	00000000000000000000000000000001
$\mathbf{x} \ll 31$	10000000000000000000000000000000
$(x \ll 31) \gg 31$	11111111111111111111111111111111
$!x$	00000000000000000000000000000000
$!x \ll 31$	00000000000000000000000000000000
$(!x \ll 31) \gg 31$	00000000000000000000000000000000

- Can use in place of conditional:
- In C: if (x) \{a=y;\} else $\{a=z ;\}$ equivalent to $a=x ? y: z$;
- $a=(((x \ll 31) \gg 31) \& y)$ | (($!x \ll 31) \gg 31) \& z)$;

