
CSE351, Winter 2021M2-L2: Integers II

Integers II
CSE 351 Winter 2021

Instructor: Teaching Assistants:

Mark Wyse Kyrie Dowling Catherine Guevara Ian Hsiao

Jim Limprasert Armin Magness Allie Pfleger

Cosmo Wang Ronald Widjaja

http://xkcd.com/571/

http://xkcd.com/571/

CSE351, Winter 2021M2-L2: Integers II

Administrivia

❖ hw4 due 1/15, hw5 due 1/20

❖ Lab 1a due Friday 1/15

▪ Submit pointer.c and lab1Areflect.txt to Gradescope

❖ Lab 1b released Friday, due 1/22

▪ Bit manipulation on a custom number representation

▪ Bonus slides at the end of today’s lecture have relevant
examples

2

CSE351, Winter 2021M2-L2: Integers II

Runnable Code Snippets on Ed

❖ Ed allows you to embed runnable code snippets (e.g.,
readings, homework, discussion)

▪ These are editable and rerunnable!

▪ Hide compiler warnings, but will show compiler errors and
runtime errors

❖ Suggested use

▪ Good for experimental questions about basic behaviors in C

▪ NOT entirely consistent with the CSE Linux environment, so
should not be used for any lab-related work

3

CSE351, Winter 2021M2-L2: Integers II

Reading Review

❖ Terminology:

▪ UMin, UMax, TMin, TMax

▪ Type casting: implicit vs. explicit

▪ Integer extension: zero extension vs. sign extension

▪ Modular arithmetic and arithmetic overflow

▪ Bit shifting: left shift, logical right shift, arithmetic right shift

❖ Questions from the Reading?

4

CSE351, Winter 2021M2-L2: Integers II

Review Questions

❖ What is the value (and encoding) of TMin for a
fictional 6-bit wide integer data type?

❖ For unsigned char uc = 0xA1;, what are the
produced data for the cast (short)uc?

❖ What is the result of the following expressions?

▪ (signed char)uc >> 2

▪ (unsigned char)uc >> 3

5

CSE351, Winter 2021M2-L2: Integers II

Why Does Two’s Complement Work?

❖ For all representable positive integers 𝑥, we want:

▪ What are the 8-bit negative encodings for the following?

6

bit representation of –𝑥
+ bit representation of –𝑥

0 (ignoring the carry-out bit)

00000001

+ ????????

00000000

00000010

+ ????????

00000000

11000011

+ ????????

00000000

CSE351, Winter 2021M2-L2: Integers II

Why Does Two’s Complement Work?

❖ For all representable positive integers 𝑥, we want:

▪ What are the 8-bit negative encodings for the following?

7

bit representation of –𝑥
+ bit representation of –𝑥

0 (ignoring the carry-out bit)

00000001

+ 11111111

100000000

00000010

+ 11111110

100000000

11000011

+ 00111101

100000000

These are the bitwise complement plus 1!
-x == ~x + 1

CSE351, Winter 2021M2-L2: Integers II

Integers

❖ Binary representation of integers

▪ Unsigned and signed

▪ Casting in C

❖ Consequences of finite width representations

▪ Sign extension, overflow

❖ Shifting and arithmetic operations

8

CSE351, Winter 2021M2-L2: Integers II

UMax – 1

0

TMax

TMin

–1

–2

0/UMin

UMax

TMax

TMax + 1

2’s Complement
Range

Unsigned
Range

Signed/Unsigned Conversion Visualized

❖ Two’s Complement → Unsigned

▪ Ordering Inversion

▪ Negative → Big Positive

9

CSE351, Winter 2021M2-L2: Integers II

Values To Remember

❖ Unsigned Values
▪ UMin = 0b00…0

= 0

▪ UMax = 0b11…1

= 2𝑤 − 1

❖ Example: Values for 𝑤 = 64

10

❖ Two’s Complement Values
▪ TMin = 0b10…0

= −2𝑤−1

▪ TMax = 0b01…1

= 2𝑤−1 − 1

▪ −1 = 0b11…1

Decimal Hex

UMax 18,446,744,073,709,551,615 FF FF FF FF FF FF FF FF

TMax 9,223,372,036,854,775,807 7F FF FF FF FF FF FF FF

TMin -9,223,372,036,854,775,808 80 00 00 00 00 00 00 00

-1 -1 FF FF FF FF FF FF FF FF

0 0 00 00 00 00 00 00 00 00

CSE351, Winter 2021M2-L2: Integers II

In C: Signed vs. Unsigned

❖ Casting

▪ Bits are unchanged, just interpreted differently!
• int tx, ty;

• unsigned int ux, uy;

▪ Explicit casting
• tx = (int) ux;

• uy = (unsigned int) ty;

▪ Implicit casting can occur during assignments or function
calls
• tx = ux;

• uy = ty;

11

CSE351, Winter 2021M2-L2: Integers II

Casting Surprises

❖ Integer literals (constants)

▪ By default, integer constants are considered signed integers
• Hex constants already have an explicit binary representation

▪ Use “U” (or “u”) suffix to explicitly force unsigned
• Examples: 0U, 4294967259u

❖ Expression Evaluation

▪ When you mixed unsigned and signed in a single expression,
then signed values are implicitly cast to unsigned

▪ Including comparison operators <, >, ==, <=, >=

12

!!!

CSE351, Winter 2021M2-L2: Integers II

Practice Question 1

❖ Assuming 8-bit data (i.e., bit position 7 is the MSB),
what will the following expression evaluate to?

▪ UMin = 0, UMax = 255, TMin = -128, TMax = 127

❖ 127 < (signed char) 128u

13

CSE351, Winter 2021M2-L2: Integers II

Integers

❖ Binary representation of integers

▪ Unsigned and signed

▪ Casting in C

❖ Consequences of finite width representations

▪ Sign extension, overflow

❖ Shifting and arithmetic operations

14

CSE351, Winter 2021M2-L2: Integers II

Sign Extension

❖ Task: Given a 𝑤-bit signed integer X, convert it to
𝑤+𝑘-bit signed integer X′ with the same value

❖ Rule: Add 𝑘 copies of sign bit

▪ Let 𝑥𝑖 be the 𝑖-th digit of X in binary

▪ X′ = 𝑥𝑤−1, … , 𝑥𝑤−1, 𝑥𝑤−1, 𝑥𝑤−2, … , 𝑥1, 𝑥0

15

𝑘 copies of MSB

• • •X

Xʹ • • • • • •

• • •

𝑤

𝑘 𝑤

original X

CSE351, Winter 2021M2-L2: Integers II

Two’s Complement Arithmetic

❖ The same addition procedure works for both
unsigned and two’s complement integers

▪ Simplifies hardware: only one algorithm for addition

▪ Algorithm: simple addition, discard the highest carry bit
• Called modular addition: result is sum modulo 2𝑤

16

CSE351, Winter 2021M2-L2: Integers II

Arithmetic Overflow

❖ When a calculation produces a result
that can’t be represented in the
current encoding scheme
▪ Integer range limited by fixed width

▪ Can occur in both the positive and negative
directions

❖ C and Java ignore overflow exceptions
▪ You end up with a bad value in your

program and no warning/indication… oops!

17

Bits Unsigned Signed

0000 0 0

0001 1 1

0010 2 2

0011 3 3

0100 4 4

0101 5 5

0110 6 6

0111 7 7

1000 8 -8

1001 9 -7

1010 10 -6

1011 11 -5

1100 12 -4

1101 13 -3

1110 14 -2

1111 15 -1

CSE351, Winter 2021M2-L2: Integers II

Overflow: Unsigned

❖ Addition: drop carry bit (−2N)

❖ Subtraction: borrow (+2N)

18

15

+ 2

17

1

1111

+ 0010

10001

0000

0001

0011

1111

1110

1100

1011

1010

1000 0111

0110

0100

0010

0101

1001

1101

0

1

2

3

4

5

6

78

9

10

11

12

13

14

15

Unsigned

1

- 2

-1

15

10001

- 0010

1111

±2N because of
modular arithmetic

CSE351, Winter 2021M2-L2: Integers II

Overflow: Two’s Complement

❖ Addition: (+) + (+) = (−) result?

❖ Subtraction: (−) + (−) = (+)?

19

0000

0001

0011

1111

1110

1100

1011

1010

1000 0111

0110

0100

0010

0101

1001

1101

0

+ 1

+ 2

+ 3

+ 4

+ 5

+ 6

+ 7– 8

– 7

– 6

– 5

– 4

– 3

– 2

– 1

For signed: overflow if operands have
same sign and result’s sign is different

Two’s
Complement

6

+ 3

9

-7

0110

+ 0011

1001

-7

- 3

-10

6

1001

- 0011

0110

CSE351, Winter 2021M2-L2: Integers II

Practice Questions 2

❖ Assuming 8-bit integers:

▪ 0x27 = 39 (signed) = 39 (unsigned)

▪ 0xD9 = -39 (signed) = 217 (unsigned)

▪ 0x7F = 127 (signed) = 127 (unsigned)

▪ 0x81 = -127 (signed) = 129 (unsigned)

❖ For the following additions, did signed and/or
unsigned overflow occur?

▪ 0x27 + 0x81

▪ 0x7F + 0xD9

20

CSE351, Winter 2021M2-L2: Integers II

Integers

❖ Binary representation of integers

▪ Unsigned and signed

▪ Casting in C

❖ Consequences of finite width representations

▪ Sign extension, overflow

❖ Shifting and arithmetic operations

21

CSE351, Winter 2021M2-L2: Integers II

Shift Operations

❖ Throw away (drop) extra bits that “fall off” the end

❖ Left shift (x<<n) bit vector x by n positions

▪ Fill with 0’s on right

❖ Right shift (x>>n) bit-vector x by n positions

▪ Logical shift (for unsigned values)
• Fill with 0’s on left

▪ Arithmetic shift (for signed values)
• Replicate most significant bit on left (maintains sign of x)

22

x 0010 0010

x<<3 0001 0000

logical: x>>2 0000 1000

arithmetic: x>>2 0000 1000

x 1010 0010

x<<3 0001 0000

logical: x>>2 0010 1000

arithmetic: x>>2 1110 1000

CSE351, Winter 2021M2-L2: Integers II

Shift Operations

❖ Arithmetic:

▪ Left shift (x<<n) is equivalent to multiply by 2n

▪ Right shift (x>>n) is equivalent to divide by 2n

▪ Shifting is faster than general multiply and divide
operations!

❖ Notes:

▪ Shifts by n<0 or n≥w (w is bit width of x) are undefined

▪ In C: behavior of >> is determined by the compiler
• In gcc / C lang, depends on data type of x (signed/unsigned)

▪ In Java: logical shift is >>> and arithmetic shift is >>

23

CSE351, Winter 2021M2-L2: Integers II

Left Shifting Arithmetic 8-bit Example

❖ No difference in left shift operation for unsigned and
signed numbers (just manipulates bits)
▪ Difference comes during interpretation: x*2n?

24

x = 25; 00011001 =

L1=x<<2; 0001100100 =

L2=x<<3; 00011001000 =

L3=x<<4; 000110010000 =

25 25

100 100

-56 200

-112 144

Signed Unsigned

signed overflow

unsigned overflow

signed overflow

CSE351, Winter 2021M2-L2: Integers II

Right Shifting Arithmetic 8-bit Examples

❖ Reminder: C operator >> does logical shift on
unsigned values and arithmetic shift on signed values
▪ Logical Shift: x/2n?

25

xu = 240u; 11110000 =

R1u=xu>>3; 00011110000 =

R2u=xu>>5; 0000011110000 =

240

30

7

rounding (down)

CSE351, Winter 2021M2-L2: Integers II

Right Shifting Arithmetic 8-bit Examples

❖ Reminder: C operator >> does logical shift on
unsigned values and arithmetic shift on signed values
▪ Arithmetic Shift: x/2n?

26

xs = -16; 11110000 =

R1s=xs>>3; 11111110000 =

R2s=xs>>5; 1111111110000 =

-16

-2

-1

rounding (down)

CSE351, Winter 2021M2-L2: Integers II

Challenge Questions

❖ Assume we are using 8-bit arithmetic:

▪ x == (unsigned char) x

▪ x >= 128U

▪ x != (x>>2)<<2

▪ x == -x

• Hint: there are two solutions

▪ (x < 128U) && (x > 0x3F)

27

For the following expressions, find a value of signed char x,
if there exists one, that makes the expression True.

Example All Solutions

CSE351, Winter 2021M2-L2: Integers II

Summary

❖ Sign and unsigned variables in C

▪ Bit pattern remains the same, just interpreted differently

▪ Strange things can happen with our arithmetic when we
convert/cast between sign and unsigned numbers
• Type of variables affects behavior of operators (shifting, comparison)

❖ We can only represent so many numbers in 𝑤 bits

▪ When we exceed the limits, arithmetic overflow occurs

▪ Sign extension tries to preserve value when expanding

❖ Shifting is a useful bitwise operator

▪ Right shifting can be arithmetic (sign) or logical (0)

▪ Can be used in multiplication with constant or bit masking

28

CSE351, Winter 2021M2-L2: Integers II

Some examples of using shift operators in combination
with bitmasks, which you may find helpful for Lab 1b.

❖ Extract the 2nd most significant byte of an int

❖ Extract the sign bit of a signed int

❖ Conditionals as Boolean expressions

29

CSE351, Winter 2021M2-L2: Integers II

Using Shifts and Masks

❖ Extract the 2nd most significant byte of an int:

▪ First shift, then mask: (x>>16) & 0xFF

▪ Or first mask, then shift: (x & 0xFF0000)>>16

30

0xFF 00000000 00000000 00000000 11111111

(x>>16) & 0xFF 00000000 00000000 00000000 00000010

x>>16 00000000 00000000 00000001 00000010

x 00000001 00000010 00000011 00000100

x & 0xFF0000 00000000 00000010 00000000 00000000

(x&0xFF0000)>>16 00000000 00000000 00000000 00000010

0xFF0000 00000000 11111111 00000000 00000000

x 00000001 00000010 00000011 00000100

CSE351, Winter 2021M2-L2: Integers II

Using Shifts and Masks

❖ Extract the sign bit of a signed int:

▪ First shift, then mask: (x>>31) & 0x1

• Assuming arithmetic shift here, but this works in either case

• Need mask to clear 1s possibly shifted in

31

x 00000001 00000010 00000011 00000100

x>>31 00000000 00000000 00000000 00000000

0x1 00000000 00000000 00000000 00000001

(x>>31) & 0x1 00000000 00000000 00000000 00000000

x 10000001 00000010 00000011 00000100

x>>31 11111111 11111111 11111111 11111111

0x1 00000000 00000000 00000000 00000001

(x>>31) & 0x1 00000000 00000000 00000000 00000001

0

0

1

1

CSE351, Winter 2021M2-L2: Integers II

Using Shifts and Masks

❖ Conditionals as Boolean expressions
▪ For int x, what does (x<<31)>>31 do?

▪ Can use in place of conditional:
• In C: if(x) {a=y;} else {a=z;} equivalent to a=x?y:z;

• a=(((x<<31)>>31)&y) | (((!x<<31)>>31)&z);

32

x=!!123 00000000 00000000 00000000 00000001

x<<31 10000000 00000000 00000000 00000000

(x<<31)>>31 11111111 11111111 11111111 11111111

!x 00000000 00000000 00000000 00000000

!x<<31 00000000 00000000 00000000 00000000

(!x<<31)>>31 00000000 00000000 00000000 00000000

