Integers II
CSE 351 Winter 2021

Instructor: Teaching Assistants:
Mark Wyse Kyrie Dowling Catherine Guevara Ian Hsiao
Jim Limprasert Armin Magness Allie Pfleger
Cosmo Wang Ronald Widjaja

http://xkcd.com/571/
Administrivia

❖ hw4 due 1/15, hw5 due 1/20

❖ Lab 1a due Friday 1/15
 ▪ Submit pointer.c and lab1Areflect.txt to Gradescope

❖ Lab 1b released Friday, due 1/22
 ▪ Bit manipulation on a custom number representation
 ▪ Bonus slides at the end of today’s lecture have relevant examples
Runnable Code Snippets on Ed

- Ed allows you to embed runnable code snippets (e.g., readings, homework, discussion)
 - These are editable and rerunnable!
 - Hide compiler warnings, but will show compiler errors and runtime errors

- Suggested use
 - Good for experimental questions about basic behaviors in C
 - NOT entirely consistent with the CSE Linux environment, so should not be used for any lab-related work
Reading Review

❖ Terminology:
 - UMin, UMax, Tmin, Tmax
 - Type casting: implicit vs. explicit
 - Integer extension: zero extension vs. sign extension
 - Modular arithmetic and arithmetic overflow
 - Bit shifting: left shift, logical right shift, arithmetic right shift

❖ Questions from the Reading?
Review Questions

❖ What is the value (and encoding) of \(T_{\text{Min}} \) for a fictional 6-bit wide integer data type?

\[
\text{Ob 1 0 0 0 0 0} \rightarrow -2^5 = -32
\]

❖ For unsigned char \(\text{uc} = 0xA1; \), what are the produced data for the cast \((\text{short})\text{uc}\)?

\[
0xA1 = \text{Ob 10100001} \quad 0x0 0 A 1
\]

❖ What is the result of the following expressions?

- \((\text{signed char})\text{uc} >> 2\)

- \((\text{unsigned char})\text{uc} >> 3\)
Why Does Two’s Complement Work?

❖ For all representable positive integers x, we want:

\[
\text{bit representation of } x + \text{bit representation of } -x = 0 \quad (\text{ignoring the carry-out bit})
\]

❖ What are the 8-bit negative encodings for the following?

\[
\begin{align*}
00000001 & \quad 00000010 & \quad 11000011 \\
00000000 & + 00000000 & + 00000000
\end{align*}
\]
Why Does Two’s Complement Work?

❖ For all representable positive integers x, we want:

\[
\text{bit representation of } x + \text{bit representation of } -x + 0 \quad (\text{ignoring the carry-out bit})
\]

▪ What are the 8-bit negative encodings for the following?

\[
\begin{align*}
00000001 + 11111111 &= 100000000 \\
00000010 + 11111110 &= 100000000 \\
11000011 + 00111101 &= 100000000
\end{align*}
\]

These are the bitwise complement plus 1!

\[-x \equiv \sim x + 1\]
Integers

❖ Binary representation of integers
 ▪ Unsigned and signed
 ▪ Casting in C

❖ Consequences of finite width representations
 ▪ Sign extension, overflow

❖ Shifting and arithmetic operations
Signed/Unsigned Conversion Visualized

- **Two’s Complement → Unsigned**
 - Ordering Inversion
 - Negative → Big Positive
Values To Remember

❖ Unsigned Values

▪ **UMin** = 0b00...0
 = 0

▪ **UMax** = 0b11...1
 = $2^w - 1$

❖ Two’s Complement Values

▪ **TMin** = 0b10...0
 = -2^{w-1}

▪ **TMax** = 0b01...1
 = $2^{w-1} - 1$

▪ **−1** = 0b11...1

❖ Example: Values for $w = 64$

<table>
<thead>
<tr>
<th>Decimal</th>
<th>Hex</th>
</tr>
</thead>
<tbody>
<tr>
<td>UMax 18,446,744,073,709,551,615</td>
<td>FF FF FF FF FF FF FF FF FF</td>
</tr>
<tr>
<td>Tmax 9,223,372,036,854,775,807</td>
<td>7F FF FF FF FF FF FF FF FF</td>
</tr>
<tr>
<td>Tmin -9,223,372,036,854,775,808</td>
<td>80 00 00 00 00 00 00 00</td>
</tr>
<tr>
<td>-1</td>
<td>FF FF FF FF FF FF FF FF FF</td>
</tr>
<tr>
<td>0</td>
<td>00 00 00 00 00 00 00 00 00</td>
</tr>
</tbody>
</table>
In C: Signed vs. Unsigned

❖ Casting

❖ Bits are unchanged, just interpreted differently!
 • `int tx, ty;`
 • `unsigned int ux, uy;`

❖ Explicit casting
 • `tx = (int) ux;`
 • `uy = (unsigned int) ty;`

❖ Implicit casting can occur during assignments or function calls
 • `tx = ux;`
 • `uy = ty;`
Casting Surprises

- Integer literals (constants)
 - By default, integer constants are considered *signed* integers
 - Hex constants already have an explicit binary representation
 - Use “U” (or “u”) suffix to explicitly force *unsigned*
 - Examples: 0U, 4294967259u

- Expression Evaluation
 - When you mixed unsigned and signed in a single expression, then *signed values are implicitly cast to unsigned*
 - Including comparison operators <, >, ==, <=, >=
Practice Question 1

- Assuming 8-bit data (i.e., bit position 7 is the MSB), what will the following expression evaluate to?
 - $U_{\text{Min}} = 0$, $U_{\text{Max}} = 255$, $T_{\text{Min}} = -128$, $T_{\text{Max}} = 127$

- $127 < (\text{signed char}) 128u \Rightarrow \text{False}$
Integers

- Binary representation of integers
 - Unsigned and signed
 - Casting in C
- Consequences of finite width representations
 - Sign extension, overflow
- Shifting and arithmetic operations
Sign Extension

- **Task:** Given a w-bit signed integer X, convert it to $w+k$-bit signed integer X' *with the same value*

- **Rule:** Add k copies of sign bit
 - Let x_i be the i-th digit of X in binary
 - $X' = x_{w-1}, \ldots, x_{w-1}, x_{w-1}, x_{w-2}, \ldots, x_1, x_0$

\[w' = w + k \]
Two’s Complement Arithmetic

- The same addition procedure works for both unsigned and two’s complement integers
 - **Simplifies hardware:** only one algorithm for addition
 - **Algorithm:** simple addition, discard the highest carry bit
 - Called modular addition: result is sum modulo 2^w
Arithmetic Overflow

- When a calculation produces a result that can’t be represented in the current encoding scheme → **overflow**
 - Integer range limited by fixed width
 - Can occur in both the positive and negative directions

- C and Java ignore overflow exceptions
 - You end up with a bad value in your program and no warning/indication... oops!

<table>
<thead>
<tr>
<th>Bits</th>
<th>Unsigned</th>
<th>Signed</th>
</tr>
</thead>
<tbody>
<tr>
<td>0000</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0001</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>0010</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>0011</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>0100</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>0101</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>0110</td>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>0111</td>
<td>7</td>
<td>7</td>
</tr>
<tr>
<td>1000</td>
<td>8</td>
<td>-8</td>
</tr>
<tr>
<td>1001</td>
<td>9</td>
<td>-7</td>
</tr>
<tr>
<td>1010</td>
<td>10</td>
<td>-6</td>
</tr>
<tr>
<td>1011</td>
<td>11</td>
<td>-5</td>
</tr>
<tr>
<td>1100</td>
<td>12</td>
<td>-4</td>
</tr>
<tr>
<td>1101</td>
<td>13</td>
<td>-3</td>
</tr>
<tr>
<td>1110</td>
<td>14</td>
<td>-2</td>
</tr>
<tr>
<td>1111</td>
<td>15</td>
<td>-1</td>
</tr>
</tbody>
</table>
Overflow: Unsigned

❖ **Addition:** drop carry bit (-2^N)

\[
\begin{array}{c}
15 \\
+ \ 2 \\
\hline
17 \\
\end{array}
\quad
\begin{array}{c}
1111 \\
+ \ 0010 \\
\hline
10001 \\
\end{array}
\quad
\begin{array}{c}
1 \ \\
\end{array}
\]

❖ **Subtraction:** borrow ($+2^N$)

\[
\begin{array}{c}
1 \\
- \ 2 \\
\hline
-1 \\
\end{array}
\quad
\begin{array}{c}
10001 \\
- \ 0010 \\
\hline
1111 \\
\end{array}
\quad
\begin{array}{c}
15 \\
\end{array}
\]

$\pm 2^N$ because of modular arithmetic
Overflow: Two’s Complement

- **Addition:** \((+)+ (+) = (−)\) result?

 \[
 \begin{array}{c@{}c@{}c@{}c@{}c@{}c@{}c@{}c@{}c}
 & & & & & & & \\
 & 6 & & & & & & 0110 \\
 + & 3 & & & & & + 0011 \\
 \hline
 & & & & & & & 1001
 \end{array}
 \]

 6

- **Subtraction:** \((-)+ (−) = (+)\)?

 \[
 \begin{array}{c@{}c@{}c@{}c@{}c@{}c@{}c@{}c@{}c}
 & & & & & & & \\
 - 7 & & & & & & 1001 \\
 - & 3 & & & & - 0011 \\
 \hline
 - & 10 & & & & 0110
 \end{array}
 \]

 For signed: overflow if operands have same sign and result’s sign is different
Practice Questions 2

❖ Assuming 8-bit integers:
 ▪ 0x27 = 39 (signed) = 39 (unsigned)
 ▪ 0xD9 = -39 (signed) = 217 (unsigned)
 ▪ 0x7F = 127 (signed) = 127 (unsigned)
 ▪ 0x81 = -127 (signed) = 129 (unsigned)

❖ For the following additions, did signed and/or unsigned overflow occur?
 ▪ 0x27 + 0x81
 - Signed: 39 + -127 = -88 ✔ None!
 - Unsigned: 39 + 129 = 168
 ▪ 0x7F + 0xD9
 - Signed: 127 + -39 = 88 ✔
 - Unsigned: 127 + 217 = 346 > UMax
Integers

- Binary representation of integers
 - Unsigned and signed
 - Casting in C
- Consequences of finite width representations
 - Sign extension, overflow
- Shifting and arithmetic operations
Shift Operations

- Throw away (drop) extra bits that “fall off” the end
- Left shift \((x\ll n)\) bit vector \(x\) by \(n\) positions
 - Fill with 0’s on right
- Right shift \((x\gg n)\) bit-vector \(x\) by \(n\) positions
 - Logical shift (for unsigned values)
 - Fill with 0’s on left
 - Arithmetic shift (for signed values)
 - Replicate most significant bit on left (maintains sign of \(x\))

<table>
<thead>
<tr>
<th>(x)</th>
<th>0010 0010</th>
</tr>
</thead>
<tbody>
<tr>
<td>(x\ll 3)</td>
<td>0001 0000</td>
</tr>
<tr>
<td>logical: (x\gg 2)</td>
<td>0000 1000</td>
</tr>
<tr>
<td>arithmetic: (x\gg 2)</td>
<td>0000 1000</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>(x)</th>
<th>1010 0010</th>
</tr>
</thead>
<tbody>
<tr>
<td>(x\ll 3)</td>
<td>0001 0000</td>
</tr>
<tr>
<td>logical: (x\gg 2)</td>
<td>0010 1000</td>
</tr>
<tr>
<td>arithmetic: (x\gg 2)</td>
<td>1110 1000</td>
</tr>
</tbody>
</table>
Shift Operations

❖ Arithmetic:
- Left shift ($x<<n$) is equivalent to multiply by 2^n
- Right shift ($x>>n$) is equivalent to divide by 2^n
- Shifting is faster than general multiply and divide operations!

❖ Notes:
- Shifts by $n<0$ or $n\geq w$ (w is bit width of x) are undefined.
- **In C:** behavior of $>>$ is determined by the compiler.
 - In gcc / C lang, depends on data type of x (signed/unsigned).
- **In Java:** logical shift is $>>>$ and arithmetic shift is $>>$.
Left Shifting Arithmetic 8-bit Example

- No difference in left shift operation for unsigned and signed numbers (just manipulates bits)
 - Difference comes during interpretation: \(x \times 2^n ? \)

\[
\begin{align*}
x &= 25; \quad 000111001 = 25 \\
L1 &= x << 2; \quad 00011100100 = 100 \\
L2 &= x << 3; \quad 0001110010000 = -56 \\
L3 &= x << 4; \quad 000111001000000 = -112
\end{align*}
\]

- Signed overflow
- Signed overflow
Right Shifting Arithmetic 8-bit Examples

- **Reminder:** C operator `>>` does *logical* shift on unsigned values and *arithmetic* shift on signed values
 - Logical Shift: $x/2^n$?

\[
\begin{align*}
xu &= 240u; \quad 11110000 \quad = \quad 240 \\
R1u &= xu >> 3; \quad 00011110000 \quad = \quad 30 \\
R2u &= xu >> 5; \quad 0000011110000 \quad = \quad 7 \quad \text{rounding (down)}
\end{align*}
\]
Right Shifting Arithmetic 8-bit Examples

- **Reminder:** C operator `>>` does *logical* shift on unsigned values and *arithmetic* shift on signed values

- **Arithmetic Shift:** $x/2^n$?

\[
x_{s} = -16; \quad 11110000 = -16
\]

\[
R_{1s} = x_{s} >> 3; \quad 11111110000 = -2
\]

\[
R_{2s} = x_{s} >> 5; \quad 111111110000 = -1
\]

- rounding (down)
Challenge Questions

For the following expressions, find a value of signed char \(x\), if there exists one, that makes the expression True.

- Assume we are using 8-bit arithmetic:
 - \(x == (\text{unsigned char}) x\)
 - \(x >= 128U\)
 - \(x != (x>>2)<<2\)
 - \(x == -x\)
 - Hint: there are two solutions
 - \((x < 128U) \&\& (x > 0x3F')\)

<table>
<thead>
<tr>
<th>Example</th>
<th>All Solutions</th>
</tr>
</thead>
<tbody>
<tr>
<td>(x = 0)</td>
<td>(x = 0)</td>
</tr>
<tr>
<td>(x = -1)</td>
<td>any (x < 0)</td>
</tr>
<tr>
<td>(x = 3)</td>
<td>any (x) where lowest 2 bits are not 0b00</td>
</tr>
<tr>
<td>(x = 0)</td>
<td>(x = 0)</td>
</tr>
<tr>
<td>(x = 0)</td>
<td>(x = -128)</td>
</tr>
</tbody>
</table>

- Any \(x\) where upper two bits are exactly 0b01

\(\text{Example}\)

\(\text{All Solutions}\)
Summary

❖ Sign and unsigned variables in C
 ▪ Bit pattern remains the same, just interpreted differently
 ▪ Strange things can happen with our arithmetic when we convert/cast between sign and unsigned numbers
 • Type of variables affects behavior of operators (shifting, comparison)

❖ We can only represent so many numbers in w bits
 ▪ When we exceed the limits, arithmetic overflow occurs
 ▪ Sign extension tries to preserve value when expanding

❖ Shifting is a useful bitwise operator
 ▪ Right shifting can be arithmetic (sign) or logical (0)
 ▪ Can be used in multiplication with constant or bit masking
Some examples of using shift operators in combination with bitmasks, which you may find helpful for Lab 1b.

- Extract the 2nd most significant byte of an `int`
- Extract the sign bit of a signed `int`
- Conditionals as Boolean expressions
Using Shifts and Masks

- Extract the 2nd most significant byte of an int:
 - First shift, then mask: \((x \gg 16) \& 0xFF\)

x	00000001 00000010 00000011 00000100
x\gg16	00000000 00000000 00000001 00000010
0xFF	00000000 00000000 00000000 11111111
(x\gg16) \& 0xFF	00000000 00000000 00000000 00000010

 - Or first mask, then shift: \((x \& 0xFF0000) \gg 16\)

x	00000001 00000010 00000011 00000100
0xFF0000	00000000 11111111 00000000 00000000
x \& 0xFF0000	00000000 00000010 00000000 00000000
(x\&0xFF0000) \gg 16	00000000 00000000 00000000 00000010
Using Shifts and Masks

- Extract the *sign bit* of a signed `int`:
 - First shift, then mask: `(x>>31) & 0x1`
 - Assuming arithmetic shift here, but this works in either case
 - Need mask to clear 1s possibly shifted in

<table>
<thead>
<tr>
<th></th>
<th>00000000 00000010 00000011 00000100</th>
</tr>
</thead>
<tbody>
<tr>
<td>x</td>
<td></td>
</tr>
<tr>
<td>x>>31</td>
<td>00000000 00000000 00000000 00000000 0</td>
</tr>
<tr>
<td>0x1</td>
<td>00000000 00000000 00000000 00000000 00000000 1</td>
</tr>
<tr>
<td>(x>>31) & 0x1</td>
<td>00000000 00000000 00000000 00000000 00000000 00000000 0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>10000000 10000010 00000011 00000100</th>
</tr>
</thead>
<tbody>
<tr>
<td>x</td>
<td></td>
</tr>
<tr>
<td>x>>31</td>
<td>11111111 11111111 11111111 11111111 1</td>
</tr>
<tr>
<td>0x1</td>
<td>00000000 00000000 00000000 00000000 00000000 1</td>
</tr>
<tr>
<td>(x>>31) & 0x1</td>
<td>00000000 00000000 00000000 00000000 00000000 00000000 00000001</td>
</tr>
</tbody>
</table>
Using Shifts and Masks

❖ Conditionals as Boolean expressions

❖ For int x, what does \((x << 31) >> 31\) do?

x=!!123	00000000 00000000 00000000 00000000 00000001
x<<31	10000000 00000000 00000000 00000000 00000000
(x<<31) >> 31	11111111 11111111 11111111 11111111 11111111
!x	00000000 00000000 00000000 00000000 00000000
!x<<31	00000000 00000000 00000000 00000000 00000000
(!x<<31) >> 31	00000000 00000000 00000000 00000000 00000000

❖ Can use in place of conditional:

- In C: \(\text{if}(x) \{a=y;\} \text{ else } \{a=z;\}\) equivalent to \(a=x?y:z;\)
- \(a=((x<<31)>>31)&y) \mid ((!x<<31)>>31)&z);\)