
CSE351, Winter 2021M1-L4: Memory & Data III

Memory & Data III
CSE 351 Winter 2021

Instructor:

Mark Wyse

Teaching Assistants:

Kyrie Dowling

Catherine Guevara

Ian Hsiao

Jim Limprasert

Armin Magness

Allie Pfleger

Cosmo Wang

Ronald Widjaja

image source

https://www.freecodecamp.org/news/unmasking-bitmasked-dynamic-programming-25669312b77b/

CSE351, Winter 2021M1-L4: Memory & Data III

Administrivia

❖ hw3 due Wednesday, hw4 due Friday

▪ by 11:00am PST!

❖ Lab 1a

▪ Workflow:
1) Edit pointer.c

2) Run the Makefile (make clean followed by make) and check for
compiler errors & warnings

3) Run ptest (./ptest) and check for correct behavior

4) Run rule/syntax checker (python3 dlc.py) and check output

▪ Due Friday 1/15
• We grade just your last submission

2

CSE351, Winter 2021M1-L4: Memory & Data III

Reading Review

❖ Terminology:

▪ Bitwise operators (&, |, ^, ~)

▪ Logical operators (&&, ||, !)

▪ Short-circuit evaluation

❖ Questions from the Reading?

▪ about Bitwise and Logical Operators

3

CSE351, Winter 2021M1-L4: Memory & Data III

Bitmasks

❖ Typically binary bitwise operators (&, |, ^) are used
with one operand being the “input” and other
operand being a specially-chosen bitmask (or mask)
that performs a desired operation

❖ Operations for a bit 𝑏 (answer with 0, 1, 𝑏, or ത𝑏):

𝑏 & 0 = ____ 𝑏 & 1 = ____

𝑏 | 0 = ____ 𝑏 | 1 = ____

𝑏 ^ 0 = ____ 𝑏 ^ 1 = ____

4

CSE351, Winter 2021M1-L4: Memory & Data III

Bitmasks

❖ Typically binary bitwise operators (&, |, ^) are used
with one operand being the “input” and other
operand being a specially-chosen bitmask (or mask)
that performs a desired operation

❖ Example: 𝑏|0 = 𝑏, 𝑏|1 = 1

5

01010101 ← input

| 11110000 ← bitmask

11110101

CSE351, Winter 2021M1-L4: Memory & Data III

Short-Circuit Evaluation

❖ If the result of a binary logical operator (&&, ||) can
be determined by its first operand, then the second
operand is never evaluated

▪ Also known as early termination

❖ Example: (p && *p) for a pointer p to “protect” the
dereference

▪ Dereferencing NULL (0) results in a segfault

6

CSE351, Winter 2021M1-L4: Memory & Data III

Numerical Encoding Design Example

❖ Encode a standard deck of playing cards

▪ 52 cards in 4 suits

❖ Operations to implement:

▪ Which is the higher value card?

▪ Are they the same suit?

7

CSE351, Winter 2021M1-L4: Memory & Data III

Representations and Fields

1) 1 bit per card (52): bit corresponding to card set to 1

▪ “One-hot” encoding (similar to set notation)

▪ Drawbacks:
• Hard to compare values and suits

• Large number of bits required

2) 1 bit per suit (4), 1 bit per number (13): 2 bits set

▪ Pair of one-hot encoded values

▪ Easier to compare suits and values, but still lots of bits used

8

52 cards

4 suits

13 numbers

CSE351, Winter 2021M1-L4: Memory & Data III

Representations and Fields

3) Binary encoding of all 52 cards – only 6 bits needed

▪ 26 = 64 ≥ 52

▪ Fits in one byte (smaller than one-hot encodings)

▪ How can we make value and suit comparisons easier?

4) Separate binary encodings of suit (2 bits) and value
(4 bits)

▪ Also fits in one byte, and easy to do comparisons

9

low-order 6 bits of a byte

suit value
♣ 00

♦ 01

♥ 10

♠ 11

K Q J . . . 3 2 A

1101 1100 1011 ... 0011 0010 0001

CSE351, Winter 2021M1-L4: Memory & Data III

Compare Card Suits

char hand[5]; // represents a 5-card hand

char card1, card2; // two cards to compare

card1 = hand[0];

card2 = hand[1];

...

if (sameSuitP(card1, card2)) { ... }

10

SUIT_MASK = 0x30 = 0 0 1 1 0 0 0 0

suit value

mask: a bit vector designed to achieve a desired
behavior when used with a bitwise operator on
another bit vector v.
Here we turn all but the bits of interest in v to 0.

#define SUIT_MASK 0x30

int sameSuitP(char card1, char card2) {

return (!((card1 & SUIT_MASK) ^ (card2 & SUIT_MASK)));

//return (card1 & SUIT_MASK) == (card2 & SUIT_MASK);

}

returns int equivalent

CSE351, Winter 2021M1-L4: Memory & Data III

Compare Card Suits

11

#define SUIT_MASK 0x30

int sameSuitP(char card1, char card2) {

return (!((card1 & SUIT_MASK) ^ (card2 & SUIT_MASK)));

//return (card1 & SUIT_MASK) == (card2 & SUIT_MASK);

}

0 0 0 1 0 0 1 0 0 0 0 1 1 1 0 1

0 0 1 1 0 0 0 0 SUIT_MASK 0 0 1 1 0 0 0 0

0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 1
!(x^y) equivalent to x==y

🃂 🃎&

=

^

!

=

&

CSE351, Winter 2021M1-L4: Memory & Data III

Compare Card Values

12

VALUE_MASK = 0x0F = 0 0 0 0 1 1 1 1

suit value

#define VALUE_MASK 0x0F

int greaterValue(char card1, char card2) {

return ((unsigned int)(card1 & VALUE_MASK) >

(unsigned int)(card2 & VALUE_MASK));

}

char hand[5]; // represents a 5-card hand

char card1, card2; // two cards to compare

card1 = hand[0];

card2 = hand[1];

...

if (greaterValue(card1, card2)) { ... }

CSE351, Winter 2021M1-L4: Memory & Data III

Compare Card Values

13

#define VALUE_MASK 0x0F

int greaterValue(char card1, char card2) {

return ((unsigned int)(card1 & VALUE_MASK) >

(unsigned int)(card2 & VALUE_MASK));

}

0 0 1 0 0 0 1 0 🃂 0 0 1 0 1 1 0 1🃎
0 0 0 0 1 1 1 1 VALUE_MASK 0 0 0 0 1 1 1 1

& &

0 0 0 0 0 0 1 0 0 0 0 0 1 1 0 1

==

210 > 1310

0 (false)

CSE351, Winter 2021M1-L4: Memory & Data III

Summary

❖ Bit-level operators allow for fine-grained
manipulations of data
▪ Bitwise AND (&), OR (|), and NOT (~) different than logical

AND (&&), OR (||), and NOT (!)

▪ Especially useful with bit masks

❖ Choice of encoding scheme is important

▪ Tradeoffs based on size requirements and desired
operations

14

CSE351, Winter 2021M1-L4: Memory & Data III

Review Questions (Breakouts)

❖ Compute the result of the following expressions for
char c = 0x81;

▪ c ^ c

▪ ~c & 0xA9

▪ c || 0x80

▪ !!c

15

