
CSE351, Winter 2021M1-L2: Memory and Data I

Memory, Data, & Addressing I
CSE 351 Winter 2021

Instructor:

Mark Wyse

Teaching Assistants:

Kyrie Dowling

Catherine Guevara

Ian Hsiao

Jim Limprasert

Armin Magness

Allie Pfleger

Cosmo Wang

Ronald Widjaja
http://xkcd.com/953/

http://xkcd.com/676/

CSE351, Winter 2021M1-L2: Memory and Data I

Admin

❖ Pre-Course Survey and hw0 due tonight @ 11:59 pm
▪ Starting Week 2: hw due at 11:00 am (Seattle time)

❖ hw1 due Friday (1/8) @ 11:59 pm

❖ hw2 due Monday (1/11) @ 11:00 am

❖ Lab 0 due Friday (1/8) @ 11:59 pm
▪ This lab is exploratory and looks like a hw; the other labs will look

a lot different

❖ Ed Discussion etiquette
▪ For anything that doesn’t involve sensitive information or a

solution, post publicly (you can post anonymously!)

▪ If you feel like you question has been sufficiently answered, make
sure that a response has a checkmark

2

CSE351, Winter 2021M1-L2: Memory and Data I

Roadmap

3

car *c = malloc(sizeof(car));

c->miles = 100;

c->gals = 17;

float mpg = get_mpg(c);

free(c);

Car c = new Car();

c.setMiles(100);

c.setGals(17);

float mpg =

c.getMPG();

get_mpg:

pushq %rbp

movq %rsp, %rbp

...

popq %rbp

ret

Java:C:

Assembly
language:

Machine
code:

0111010000011000

100011010000010000000010

1000100111000010

110000011111101000011111

Computer
system:

OS:

Memory & data
Integers & floats
x86 assembly
Procedures & stacks
Executables
Arrays & structs
Memory & caches
Processes
Virtual memory
Memory allocation
Java vs. C

CSE351, Winter 2021M1-L2: Memory and Data I

Reading Review

❖ Terminology:

▪ word size, byte-oriented memory

▪ address, address space

▪ most-significant bit (MSB), least-significant bit (LSB)

▪ big-endian, little-endian

▪ pointer

❖ Questions from the Reading?

4

CSE351, Winter 2021M1-L2: Memory and Data I

Hardware: Physical View

5

CPU
(empty slot)

USB…

I/O
controller

Storage connections

Memory

CSE351, Winter 2021M1-L2: Memory and Data I

Hardware: Logical View

6

CPU Memory

Disks Net USB Etc.

Bus

CSE351, Winter 2021M1-L2: Memory and Data I

Hardware: 351 View (version 0)

❖ The CPU executes instructions

❖ Memory stores data

❖ Binary encoding!

▪ Instructions are just data
7

Memory

CPU

?

How are data
and instructions

represented?

CSE351, Winter 2021M1-L2: Memory and Data I

Hardware: 351 View (version 0)

❖ To execute an instruction, the CPU must:

1) Fetch the instruction

2) (if applicable) Fetch data needed by the instruction

3) Perform the specified computation

4) (if applicable) Write the result back to memory
8

Memory

CPU

?
data

instructions

CSE351, Winter 2021M1-L2: Memory and Data I

Hardware: 351 View (version 1)

9

Memory

CPU

take 469

registers

i-cache

data

instructions

❖ More CPU details:

▪ Instructions are held temporarily in the instruction cache

▪ Other data are held temporarily in registers

❖ Instruction fetching is hardware-controlled

❖ Data movement is programmer-controlled (assembly)

CSE351, Winter 2021M1-L2: Memory and Data I

Hardware: 351 View (version 1)

10

Memory

CPU

take 469

i-cache

data

instructions

❖ We will start by learning about Memory

❖ Addresses!

▪ Can be stored in pointers

How does a
program find its
data in memory?

registers

CSE351, Winter 2021M1-L2: Memory and Data I

Review Questions – Ed Lessons (1.5)

❖ By looking at the bits stored in memory, I can tell
what a particular 4 bytes is being used to represent.

A. True B. False

❖ We can fetch a piece of data from memory as long as
we have its address.

A. True B. False

❖ Which of the following bytes have a most-significant
bit (MSB) of 1?

A. 0x63 B. 0x90 C. 0xCA D. 0xF
11

CSE351, Winter 2021M1-L2: Memory and Data I

Binary Encoding Additional Details

❖ Because storage is finite in reality, everything is
stored as “fixed” length

▪ Data is moved and manipulated in fixed-length chunks

▪ Multiple fixed lengths (e.g., 1 byte, 4 bytes, 8 bytes)

▪ Leading zeros now must be included up to “fill out” the fixed
length

❖ Example: the “eight-bit” representation of the
number 4 is 0b00000100

12

Least Significant Bit (LSB)
Most Significant Bit (MSB)

CSE351, Winter 2021M1-L2: Memory and Data I

Bits and Bytes and Things

❖ 1 byte = 8 bits

❖ 𝑛 bits can represent up to 2𝑛 things

▪ Sometimes (oftentimes?) those “things” are bytes!

❖ If addresses are 𝑎-bits wide, how many distinct
addresses are there?

❖ What does each address refer to?

13

• • •

CSE351, Winter 2021M1-L2: Memory and Data I

Machine “Words”

❖ Instructions encoded into machine code (0’s and 1’s)

▪ Historically (still true in some assembly languages), all
instructions were exactly the size of a word

❖ We have chosen to tie word size to address size/width

▪ word size = address size = register size

▪ word size = 𝑤 bits → 2𝑤 addresses

❖ Current x86 systems use 64-bit (8-byte) words

▪ Potential address space: 𝟐𝟔𝟒 addresses
264 bytes 1.8 x 1019 bytes
= 18 billion billion bytes = 18 EB (exabytes)

▪ Actual physical address space: 48 bits
14

CSE351, Winter 2021M1-L2: Memory and Data I

Data Representations

❖ Sizes of data types (in bytes)

15
To use “bool” in C, you must #include <stdbool.h>

Java Data Type C Data Type 32-bit (old) x86-64
boolean bool 1 1

byte char 1 1

char 2 2

short short int 2 2

int int 4 4

float float 4 4

long int 4 8

double double 8 8

long long long 8 8

long double 8 16

(reference) pointer * 4 8(reference) pointer * 4 8

address size = word size

CSE351, Winter 2021M1-L2: Memory and Data I

Address of Multibyte Data

❖ Addresses still specify
locations of bytes in memory,
but we can choose to view
memory as a series of chunks
of fixed-sized data instead
▪ Addresses of successive chunks

differ by data size

▪ Which byte’s address should we
use for each word?

❖ The address of any chunk of
memory is given by the address
of the first byte
▪ To specify a chunk of memory,

need both its address and its size

16

32-bit
data

Bytes
64-bit
data

Addr
=
??

Addr
=
??

Addr
=
??

Addr
=
??

Addr
=
??

Addr
=
??

0000

0004

0008

0012

0000

0008

0x00
0x01
0x02
0x03
0x04
0x05
0x06
0x07
0x08
0x09
0x0A
0x0B
0x0C
0x0D
0x0E
0x0F

Addr.
(hex)

CSE351, Winter 2021M1-L2: Memory and Data I

Alignment

❖ The address of a chunk of
memory is considered aligned
if its address is a multiple of its
size
▪ View memory as a series of

consecutive chunks of this
particular size and see if your
chunk doesn’t cross a boundary

17

32-bit
data

Bytes
64-bit
data

Addr
=
??

Addr
=
??

Addr
=
??

Addr
=
??

Addr
=
??

Addr
=
??

0000

0004

0008

0012

0000

0008

0x00
0x01
0x02
0x03
0x04
0x05
0x06
0x07
0x08
0x09
0x0A
0x0B
0x0C
0x0D
0x0E
0x0F

Addr.
(hex)

CSE351, Winter 2021M1-L2: Memory and Data I

A Picture of Memory (64-bit view)

❖ A “64-bit (8-byte) word-aligned” view of memory:

▪ In this type of picture, each row is composed of 8 bytes

▪ Each cell is a byte

▪ An aligned, 64-bit
chunk of data will
fit on one row

18

0x04 0x05 0x06 0x070x00 0x01 0x02 0x03

0x00
0x08
0x10
0x18
0x20
0x28
0x30
0x38
0x40
0x48

Address

one word

CSE351, Winter 2021M1-L2: Memory and Data I

A Picture of Memory (64-bit view)

❖ A “64-bit (8-byte) word-aligned” view of memory:

▪ In this type of picture, each row is composed of 8 bytes

▪ Each cell is a byte

▪ An aligned, 64-bit
chunk of data will
fit on one row

19

one word

0x04 0x05 0x06 0x070x00 0x01 0x02 0x03

0x0C 0x0D 0x0E 0x0F0x08 0x09 0x0A 0x0B

0x00
0x08
0x10
0x18
0x20
0x28
0x30
0x38
0x40
0x48

Address

CSE351, Winter 2021M1-L2: Memory and Data I

Addresses and Pointers

❖ An address refers to a location in memory

❖ A pointer is a data object that holds an address

▪ Address can point to any data

❖ Value 504 stored at
address 0x08

▪ 50410 = 1F816

= 0x 00 ... 00 01 F8

❖ Pointer stored at
0x38 points to
address 0x08

20

0x00
0x08
0x10
0x18
0x20
0x28
0x30
0x38
0x40
0x48

Address

00 00 00 00 00 00 01 F8

00 00 00 00 00 00 00 08

64-bit example
(pointers are 64-bits wide)

big-endian

CSE351, Winter 2021M1-L2: Memory and Data I

Addresses and Pointers

❖ An address refers to a location in memory

❖ A pointer is a data object that holds an address

▪ Address can point to any data

❖ Pointer stored at
0x48 points to
address 0x38

▪ Pointer to a pointer!

❖ Is the data stored
at 0x08 a pointer?

▪ Could be, depending
on how you use it

21

64-bit example
(pointers are 64-bits wide)

big-endian

0x00
0x08
0x10
0x18
0x20
0x28
0x30
0x38
0x40
0x48

Address

00 00 00 00 00 00 01 F8

00 00 00 00 00 00 00 08

00 00 00 00 00 00 00 38

CSE351, Winter 2021M1-L2: Memory and Data I

Byte Ordering

❖ How should bytes within a word be ordered in
memory?

▪ Want to keep consecutive bytes in consecutive addresses

▪ Example: store the 4-byte (32-bit) int:

0x A1 B2 C3 D4

❖ By convention, ordering of bytes called endianness

▪ The two options are big-endian and little-endian
• In which address does the least significant byte go?

• Based on Gulliver’s Travels: tribes cut eggs on different sides
(big, little)

22

CSE351, Winter 2021M1-L2: Memory and Data I

Byte Ordering

❖ Big-endian (SPARC, z/Architecture)

▪ Least significant byte has highest address

❖ Little-endian (x86, x86-64)

▪ Least significant byte has lowest address

❖ Bi-endian (ARM, PowerPC)

▪ Endianness can be specified as big or little

❖ Example: 4-byte data 0xA1B2C3D4 at address 0x100

23

0x100 0x101 0x102 0x103

01 23 45 67

0x100 0x101 0x102 0x103

67 45 23 01

Big-Endian

Little-Endian

A1 B2 C3 D4

D4 C3 B2 A1

CSE351, Winter 2021M1-L2: Memory and Data I

Byte Ordering Examples

24

Decimal: 12345
Binary: 0011 0000 0011 1001

Hex: 3 0 3 9

39
30
00
00

IA32, x86-64
(little-endian)

00
00
00
00

39
30
00
00

64-bit
x86-64

39
30
00
00

32-bit
IA32

30
39

00
00

SPARC
(big-endian)

30
39

00
00

32-bit
SPARC

30
39

00
00

64-bit
SPARC

00
00
00
00

int x = 12345;

// or x = 0x3039;

long int y = 12345;

// or y = 0x3039;

(A long int is
the size of a word)

0x00

0x01

0x02

0x03

0x00

0x01

0x02

0x03

0x00

0x01

0x02

0x03

0x00

0x01

0x02

0x03

0x00

0x01

0x02

0x03

0x04

0x05

0x06

0x07

0x00

0x01

0x02

0x03

0x04

0x05

0x06

0x07

CSE351, Winter 2021M1-L2: Memory and Data I

Polling Question

❖ We store the value 0x 01 02 03 04 as a word at
address 0x100 in a big-endian, 64-bit machine

❖ What is the byte of data stored at address 0x104?

▪ Vote in Ed Lessons

A. 0x04

B. 0x40

C. 0x01

D. 0x10

E. We’re lost…

25

CSE351, Winter 2021M1-L2: Memory and Data I

Endianness

❖ Endianness only applies to memory storage

❖ Often programmer can ignore endianness because it
is handled for you

▪ Bytes wired into correct place when reading or storing from
memory (hardware)

▪ Compiler and assembler generate correct behavior (software)

❖ Endianness still shows up:

▪ Logical issues: accessing different amount of data than how
you stored it (e.g., store int, access byte as a char)

▪ Need to know exact values to debug memory errors

▪ Manual translation to and from machine code (in 351)

26

CSE351, Winter 2021M1-L2: Memory and Data I

Challenge Question

❖ Assume the state of memory is as shown below for a
little-endian machine.

❖ If we (1) read the value of an int at address 0x102, (2)
add 8 to it, and then (3) store the new value as an int

at address 0x104, which of the following addresses
retain their original value?

A. 0x102 B. 0x104 C. 0x105 D. 0x107

27

0x100 0x107

⋯ 9F 23 B7 C8 55 D0 00 04 08 ⋯

CSE351, Winter 2021M1-L2: Memory and Data I

Summary

❖ Memory is a long, byte-addressed array

▪ Word size bounds the size of the address space and memory

▪ Different data types use different number of bytes

▪ Address of chunk of memory given by address of lowest byte
in chunk

▪ Object of 𝐾 bytes is aligned if it has an address that is a
multiple of 𝐾

❖ Pointers are data objects that hold addresses

❖ Endianness determines memory storage order for
multi-byte data

28

