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Admin

» Pre-Course Survey and hwO due tonight @ 11:59 pm

= Starting Week 2: hw due at 11:00 am (Seattle time)
» hw1l due Friday (1/8) @ 11:59 pm

» hw2 due Monday (1/11) @ 11:00 am

» Lab O due Friday (1/8) @ 11:59 pm

= This lab is exploratory and looks like a hw; the other labs will look
a lot different

» Ed Discussion etiquette

" For anything that doesn’t involve sensitive information or a
solution, post publicly (you can post anonymously!)

= |f you feel like you question has been sufficiently answered, make
sure that a response has a checkmark
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Roadmap

C: Java: Memory & data

car *c = malloc(sizeof (car)); Car ¢ = new Car(); Integers & floats
c->miles = 100; c.setMiles (100) ; x86 assembly
c->gals = 17; c.setGals (17); Procedures & stacks
float mpg = get mpg(c); float mpg = Executables
free(c); c.getMPG () ; Arrays & structs
~ & Memory & caches
Assembly c;;et_mpc_l;1 ) Processes
. pushq srbp .
language: movq 4rep, Srbp Virtual memory
... Memory allocation
popgq srbp Java vs. C
ret I
\ 4
Machine 0111010000011000
de: 100011010000010000000010
code: 1000100111000010
110000011111101000011111
Computer

system:
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Reading Review

+» Terminology:
= word size, byte-oriented memory
= address, address space
" most-significant bit (MSB), least-significant bit (LSB)
" big-endian, little-endian
" pointer

% Questions from the Reading?

CSE351, Winter 2021
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Hardware: Physical View

.\OQ% U S B Ty
(’}' PCl-Express Slots
(\Q/ 1 PCI-E X16, 2 PCI-E X1 Back Panel Connectors
|
(/OQ PCI Slots
(9
QX CPU
empty slot)
Socket 775
Core2 Quad/
Core2 Extreme
Ready
intel P45
Chipset
Intel ICH10 R
I/ O Chipset § %3 Ty DDR2
! : 1066+MHz
controller 3 . ., ——— Dual Channel
T g3 Memory Slots
Seral ATA
Headers Memory

Storage connections
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Hardware: Logical View

CPU

Bus
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Hardware: 351 View (version 0)

4 )

LP Y
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« The CPU executes instructions

+» Memory stores data
4 insdu on

+ Binary encoding!

" |nstructions are just data

How are data
and instructions
represented?

~

)
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Hardware: 351 View (version 0)

/ instructions

data

&P Y,
+» To execute an instruction, the CPU must:

1) Fetch the instruction

2) (if applicable) Fetch data needed by the instruction
3) Perform the specified computation

4) (if applicable) Write the result back to memory
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Hardware: 351 View (version 1)

instructions

i-cache

take 469

\C P U registers /

«» More CPU details:

" |nstructions are held temporarily in the instruction cache

® Other data are held temporarily in registers
+ Instruction fetching is hardware-controlled
+ Data movement is programmer-controlled (assembly)
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Hardware: 351 View (version 1)

instructions

i-cache

take 469

+» We will start by learning about Memory

p
How does a

program find its
data in memory?/

« Addresses!

" Can be stored in pointers .

10



YA UNIVERSITY of WASHINGTON M1-L2: Memory and Data | CSE351, Winter 2021

Review Questions — Ed Lessons (1.5)

+ By looking at the bits stored in memory, | can tell
what a particular 4 bytes is being used to represent.

A. heed encoding

« We can fetch a piece of data from memory as long as
we have its address. need: address ¥

A. SvEe K

+» Which of the following bytes have a most-significant

A. 0 @ D. OXF ~,

SbOl10dal]  Oblenede “OWAFE 101 4} pavo | 111

11
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Binary Encoding Additional Details

+ Because storage is finite in reality, everything is

stored as “fixed” length

" Data is moved and manipulated in fixed-length chunks

" Multiple fixed lengths (e.g., 1 byte, 4 bytes, 8 bytes)

" Leading zeros now must be included up to “fill out” the fixed
length

+» Example: the “eight-bit” representation of the

number 4 is 0b00000100 = &% oY
Least Significant Bit (LSB)

Most Significant Bit (MSB)

12
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Bits and Bytes and Things

+» 1 byte = 8 bits }_f,")_‘f
+ n bits can represent up to 2" things z =z 3‘ % "l'/&b’
32 t

= Sometimes (oftentimes?) those “things” are bytes!
+ If addresses are a-bits wide, how many distinct

addresses are there? o~
+» What does each address refer to? \3\,\1

WS
S & /_ & &
Q.o’ Q'.. A~\3 ';i\i( .o @X‘ﬁs

C“” T T %
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Machine “Words”

+ Instructions encoded into machine code (0’s and 1’s)

= Hijstorically (still true in some assembly languages), all
instructions were exactly the size of aword  — ne¥ x Sk

+» We have chosen to tie word size to address size/width

= word size = address size = register size
= word size = w bits = 2% addresses

% Current x86 systems use 64-bit (8-byte) words

= Potential address space: 264 addresses
254 bytes ~ 1.8 x 10'° bytes
= 18 billion billion bytes = 18 EB (exabytes)

= Actual physical address space: 48 bits

14
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Data Representations

+ Sizes of data types (in bytes)

CSE351, Winter 2021

Java Data Type C Data Type 32-bit (old)
boolean bool 1 1
byte char 1 / 1
char 2/ 2
short short int \2 / 2
int int \4/ 4
float float 4
long int y 8
double double g\ 8
long long long /8 \ 8
long double /8 \ 16
(reference) pointer * 4 9\
/ /

To use “bool” in C, you must #include <stdbool.

h>

[ address size = word size ]

15
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Address of Multibyte Data

. _ 64-bit  32-bit Bytes  ddr.

» Addresses still specify data data y (hex)
locations of bytes in memory, 0x00
but we can choose to view A 0x01
memory as a series of chunks | 2o 8"8323 Vo

. . . : X
of fixed-sized data instead — \ 0x04
= Addresses of successive chunks Addr 1 0x05

differ by data size 0004 0x06
= Which byte’s address should we B 0x07/
use for each word? 0Ox08

, Addr | 0x09

- The address of any chunk of -

. 0008 Ox0A
memory is given by the address| Addr 1 - OxOB
of the first byte 0008 ‘1 0x0C
= To specify a chunk of memory, Adzdr Ox0D

need both its address and its size 0012 OxOE
1 OxOF
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Alignment

» The address of a chunk of
memory is considered aligned
if its address is a multiple of its
size
= View memory as a series of

consecutive chunks of this

particular size and see if your
chunk doesn’t cross a boundary

A e =0

?
a’dbw'(v\\’
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64-bit
data

Addr

0000

Addr

0008

32-bit
data

Addr

0000

Bytes

Addr

CSE351, Winter 2021

Addr.
(hex)

0x00
0x01
0x02.

0004 |
7

Addr

0008

Addr

0012

0x03
0x04
Ox05
0Ox06
0Ox07
0Ox08
0x09
Ox0A
Ox0B
Ox0C
Ox0D
OxOE
OxOF

17



YA UNIVERSITY of WASHINGTON M1-L2: Memory and Data | CSE351, Winter 2021

A Picture of Memory (64-bit view)

+» A “64-bit (8-byte) word-aligned” view of memory:

" |n this type of picture, each row is composed of 8 bytes

" Each cell is a byte one Word
I

" An aligned, 64-bit : ‘
Chunk Of data WI” Address Ox’OO Ox’01 Ox’OZ Ox’03 Ox’04 Ox’05 Ox’06 Ox’07
, ox00 [¥ T %1 %1 ¥1 ¥ 1 ¥ ¥ ¥

fit on one row x"‘b(' I -

« Ox08

**(, 0x10
Ox18
0x20
Ox28
0x30
Ox38
0x40
Ox48

18
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A Picture of Memory (64-bit view)

+» A “64-bit (8-byte) word-aligned” view of memory:

" |n this type of picture, each row is composed of 8 bytes
" Each cell is a byte

one \l/vord
= An aligned, 64-bit l \
chunk of data will Address 0X00 0x01 0x02 0x03 0x04 0x05 0x06 0x07
. Ox00 [% 7 ¥ 1 ¥1 ¥1 ¢ 1 ¥ ¥ v_)
fit on one row —_——
0x08 LA} i ni ninl nl ni aD
OXl_O, g8 —OX09 OXOfOXOB OXOU OXOD UXOE Ox(F
0x18 R
00 [
gs: N N T S
S N N T S
s N N N
o N N N
0x48 : ! : : : : |

19
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[ 64-bit example J
( )

pointers are 64-bits wide

Addresses and Pointers

big-endian

+ An address refers to a location in memory  adaress sgecc
. . . A= 2
+» A pointer is a data object that holds an address

= Address can point to any data
+» Value 504 stored at

Address
address 0x08 0x00 | ¢ ¢ & i r
= 504. = 1F8 0x08 [00:00;00:00:00:00;01:F8
- 0x00..0001F8  2X10 N S I N
B 0x18 AN
+ Pointer stored at 0x20 4
: 0x28 1
0x38 points to 0x30 —
address 0x08 0x38 1000008 K
0x40 R

0x48

20
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[ 64-bit example J
( )

pointers are 64-bits wide

Addresses and Pointers

big-endian
« An address refers to a location in memory

+» A pointer is a data object that holds an address

= Address can point to any data Do dw’(’\:)
+ Pointer r :
ointe §to ed at rddroce (a‘*"" "y
0x48 points to 0x00 N S S A R
address 0x38 0x08 [00:00:00:00:00:00:01 T8
0x10 I I
" Pointer to a pointer! (5,13 .
» Is the data stored ~ 9x20 R
, Ox28 L "}
at Ox08 a pointer? 43¢ 2
" Could be, depending 0x38 *00 000008
PENEIE 0xa0 — L e

on how you use it

0x48 (00! oo 00:00*°00:00:00:38

21
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Byte Ordering

+» How should bytes within a word be ordered in
memory?

" Want to keep consecutive bytes in consecutive addresses

= Example: 4-byte (32-bit) int:
ox|A1[B2|C3pa) — ox[>M\83 (82 [AT ]

4

» By convention, ordering of bytes called endianness
" The two options are big-endian and little-endian

- In which address does the least significant byte go?

- Based on Gulliver’s Travels: tribes cut eggs on different sides
(big, little)

22
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Byte Ordering

+ Big-endian (SPARC, z/Architecture)
= |east significant byte has highest address

+ (Little-endian (x86, x86-64)

" |Least significant byte has|lowest address
+» Bi-endian (ARM, PowerPC)
" Endianness can be specified as big or little

‘\%% LS®
+» Example: 4-byte data OxA1B2C3D4 at address 0x100

0x100  Ox101 Floz 08
Big-Endian Al | B2 )| c3 | D4
L awe

0x100 0x101 0x102 0x103
Little-Endian D4 | C3 | B2 | A1

CSE351, Winter 2021

23
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Decimal: 12345
0011 0000 0011 1001

Byte Ordering Examples |, 5 ™" ",

X 1A32, x86-64 SPARC
%’U (little-endian) (big-endian)

int x = 12345; \,‘X"/ 0x00 0x00

// or x = 0x3039; 0x01 0x01

0x02 0x02

0x03 0x03

LU 32-bit ““*%Zf‘&?“ 32-bit 64-bit

long int y = 12345; |1A32 x86-64 SPARC SPARC
// or v = 0x3039; E)xoo 39 |—| 39 | 0x00 oxo0| 00 00 |ox00
0x01] 30 f—| 30 | Ox01 ox01| 0O 00 |oxo1
0x02] 00 f—| 00 | 0x02 ox02| 30 00 |ox02
0x03| 00 l—| 00 | 0x03 oy03| 39 00 |ox03
(A long intis — 88 0x04 00 |oxo4
: 0X05 00 |oxos
the size of a word) 30 1 o0t 20005
L 00 | oxo7 39 |ox07

24
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Polling Question

«» We store the value Ox 01 02 03 04 as a word at
address 0x100 in a big-endian, 64-bit machine

« What is the byte of data stored at address 0x104?
" \/ote in Ed Lessons y = 8 —ba\es $\a~\

- _Z Y.L
A S v oy DO Y R P

B. 0x40

_ 00 oo 0000 61 62 03 O™
(T 0x01 ) o

D. 0x10
E. We're lost...

25
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Endianness

+ Endianness only applies to memory storage
+» Often programmer can ignore endianness because it
is handled for you

" Bytes wired into correct place when reading or storing from
memory (hardware)

" Compiler and assembler generate correct behavior (software)
+» Endianness still shows up:

" Logical issues: accessing different amount of data than how
you stored it (e.g., store int, access byte as a char)

" Need to know exact values to debug memory errors
= Manual translation to and from machine code (in 351)

26
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Challenge Question

+» Assume the state of memory is as shown below for a
little-endian machine.

0x100 0x107
OF | 23 | B7 | C8 | 55 | DO | 00 | O4 | 08
_» Y= loohes
+ If we (1) read the value of an int at address 0x102, (2)
add 8 to it, and then (3) store the new value as an int
at address 0x104, which of the following addresses
retain their original value?

[A. > k Ox104] C. 0x105 D. 0x107

27
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Summary

+» Memory is a long, byte-addressed array _
s =

" Word size bounds the size of the address space and memory
= Different data types use different number of bytes

= Address of chunk of memory given by address of lowest byte
in chunk

" Object of K bytes is aligned if it has an address that is a
multiple of K

+» Pointers are data objects that hold addresses

+» Endianness determines memory storage order for
multi-byte data

28



