YW UNIVERSITY of WASHINGTON

M1-L2: Memory and Data |

CSE351, Winter 2021

Memory, Data, & Addressing |

CSE 351 Winter 2021

Instructor:
Mark Wyse

Teaching Assistants:
Kyrie Dowling
Catherine Guevara
lan Hsiao

Jim Limprasert
Armin Magness
Allie Pfleger

Cosmo Wang
Ronald Widjaja

ON A SCALE OF 1Tb 10,
HOW LIKELY 1S IT THAT
THIS QUESTION IS
USING BINARY?

| e

wHHET:SHL{?m)'

http://xkcd.com/953/

http://xkcd.com/676/

YA UNIVERSITY of WASHINGTON M1-L2: Memory and Data | CSE351, Winter 2021

Admin

» Pre-Course Survey and hwO due tonight @ 11:59 pm

= Starting Week 2: hw due at 11:00 am (Seattle time)
» hw1l due Friday (1/8) @ 11:59 pm

» hw2 due Monday (1/11) @ 11:00 am

» Lab O due Friday (1/8) @ 11:59 pm

= This lab is exploratory and looks like a hw; the other labs will look
a lot different

» Ed Discussion etiquette

" For anything that doesn’t involve sensitive information or a
solution, post publicly (you can post anonymously!)

= |f you feel like you question has been sufficiently answered, make
sure that a response has a checkmark

WA UNIVERSITY of WASHINGTON M1-L2: Memory and Data | CSE351, Winter 2021

Roadmap

C: Java: Memory & data

car *c = malloc(sizeof (car)); Car ¢ = new Car(); Integers & floats
c->miles = 100; c.setMiles (100) ; x86 assembly
c->gals = 17; c.setGals (17); Procedures & stacks
float mpg = get mpg(c); float mpg = Executables
free(c); c.getMPG () ; Arrays & structs
~ & Memory & caches
Assembly c;;et_mpc_l;1) Processes
. pushq srbp .
language: movq 4rep, Srbp Virtual memory
... Memory allocation
popgq srbp Java vs. C
ret I
\ 4
Machine 0111010000011000
de: 100011010000010000000010
code: 1000100111000010
110000011111101000011111
Computer

system:

YW UNIVERSITY of WASHINGTON M1-L2: Memory and Data |

Reading Review

+» Terminology:
= word size, byte-oriented memory
= address, address space
" most-significant bit (MSB), least-significant bit (LSB)
" big-endian, little-endian
" pointer

% Questions from the Reading?

CSE351, Winter 2021

M1-L2: Memory and Data |

YA UNIVERSITY of WASHINGTON

CSE351, Winter 2021

Hardware: Physical View

.\OQ% U S B Ty
(’}' PCl-Express Slots
(\Q/ 1 PCI-E X16, 2 PCI-E X1 Back Panel Connectors
|
(/OQ PCI Slots
(9
QX CPU
empty slot)
Socket 775
Core2 Quad/
Core2 Extreme
Ready
intel P45
Chipset
Intel ICH10 R
I/ O Chipset § %3 Ty DDR2
! : 1066+MHz
controller 3 . ., ——— Dual Channel
T g3 Memory Slots
Seral ATA
Headers Memory

Storage connections

YA UNIVERSITY of WASHINGTON M1-L2: Memory and Data | CSE351, Winter 2021

Hardware: Logical View

CPU

Bus

YA UNIVERSITY of WASHINGTON M1-L2: Memory and Data |

Hardware: 351 View (version 0)

4)

LP Y

CSE351, Winter 2021

« The CPU executes instructions

+» Memory stores data
4 insdu on

+ Binary encoding!

" |nstructions are just data

How are data
and instructions
represented?

~

)

YA UNIVERSITY of WASHINGTON M1-L2: Memory and Data | CSE351, Winter 2021

Hardware: 351 View (version 0)

/ instructions

data

&P Y,
+» To execute an instruction, the CPU must:

1) Fetch the instruction

2) (if applicable) Fetch data needed by the instruction
3) Perform the specified computation

4) (if applicable) Write the result back to memory

YA UNIVERSITY of WASHINGTON M1-L2: Memory and Data | CSE351, Winter 2021

Hardware: 351 View (version 1)

instructions

i-cache

take 469

\C P U registers /

«» More CPU details:

" |nstructions are held temporarily in the instruction cache

® Other data are held temporarily in registers
+ Instruction fetching is hardware-controlled
+ Data movement is programmer-controlled (assembly)

YA UNIVERSITY of WASHINGTON M1-L2: Memory and Data | CSE351, Winter 2021

Hardware: 351 View (version 1)

instructions

i-cache

take 469

+» We will start by learning about Memory

p
How does a

program find its
data in memory?/

« Addresses!

" Can be stored in pointers .

10

YA UNIVERSITY of WASHINGTON M1-L2: Memory and Data | CSE351, Winter 2021

Review Questions — Ed Lessons (1.5)

+ By looking at the bits stored in memory, | can tell
what a particular 4 bytes is being used to represent.

A. heed encoding

« We can fetch a piece of data from memory as long as
we have its address. need: address ¥

A. SvEe K

+» Which of the following bytes have a most-significant

A. 0 @ D. OXF ~,

SbOl10dal] Oblenede “OWAFE 101 4} pavo | 111

11

YA UNIVERSITY of WASHINGTON M1-L2: Memory and Data | CSE351, Winter 2021

Binary Encoding Additional Details

+ Because storage is finite in reality, everything is

stored as “fixed” length

" Data is moved and manipulated in fixed-length chunks

" Multiple fixed lengths (e.g., 1 byte, 4 bytes, 8 bytes)

" Leading zeros now must be included up to “fill out” the fixed
length

+» Example: the “eight-bit” representation of the

number 4 is 0b00000100 = &% oY
Least Significant Bit (LSB)

Most Significant Bit (MSB)

12

YA UNIVERSITY of WASHINGTON M1-L2: Memory and Data | CSE351, Winter 2021

Bits and Bytes and Things

+» 1 byte = 8 bits }_f,")_‘f
+ n bits can represent up to 2" things z =z 3‘ % "l'/&b’
32 t

= Sometimes (oftentimes?) those “things” are bytes!
+ If addresses are a-bits wide, how many distinct

addresses are there? o~
+» What does each address refer to? \3\,\1

WS
S & /_ & &
Q.o’ Q'.. A~\3 ';i\i(.o @X‘ﬁs

C“” T T %

CSE351, Winter 2021

YW UNIVERSITY of WASHINGTON M1-L2: Memory and Data |

Machine “Words”

+ Instructions encoded into machine code (0’s and 1’s)

= Hijstorically (still true in some assembly languages), all
instructions were exactly the size of aword — ne¥ x Sk

+» We have chosen to tie word size to address size/width

= word size = address size = register size
= word size = w bits = 2% addresses

% Current x86 systems use 64-bit (8-byte) words

= Potential address space: 264 addresses
254 bytes ~ 1.8 x 10'° bytes
= 18 billion billion bytes = 18 EB (exabytes)

= Actual physical address space: 48 bits

14

YW UNIVERSITY of WASHINGTON

M1-L2: Memory and Data |

Data Representations

+ Sizes of data types (in bytes)

CSE351, Winter 2021

Java Data Type C Data Type 32-bit (old)
boolean bool 1 1
byte char 1 / 1
char 2/ 2
short short int \2 / 2
int int \4/ 4
float float 4
long int y 8
double double g\ 8
long long long /8 \ 8
long double /8 \ 16
(reference) pointer * 4 9\
/ /

To use “bool” in C, you must #include <stdbool.

h>

[address size = word size]

15

YA UNIVERSITY of WASHINGTON M1-L2: Memory and Data | CSE351, Winter 2021

Address of Multibyte Data

. _ 64-bit 32-bit Bytes ddr.

» Addresses still specify data data y (hex)
locations of bytes in memory, 0x00
but we can choose to view A 0x01
memory as a series of chunks | 2o 8"8323 Vo

. . . : X
of fixed-sized data instead — \ 0x04
= Addresses of successive chunks Addr 1 0x05

differ by data size 0004 0x06
= Which byte’s address should we B 0x07/
use for each word? 0Ox08

, Addr | 0x09

- The address of any chunk of -

. 0008 Ox0A
memory is given by the address| Addr 1 - OxOB
of the first byte 0008 ‘1 0x0C
= To specify a chunk of memory, Adzdr Ox0D

need both its address and its size 0012 OxOE
1 OxOF

YW UNIVERSITY of WASHINGTON

Alignment

» The address of a chunk of
memory is considered aligned
if its address is a multiple of its
size
= View memory as a series of

consecutive chunks of this

particular size and see if your
chunk doesn’t cross a boundary

A e =0

?
a’dbw'(v\\’

M1-L2: Memory and Data |

64-bit
data

Addr

0000

Addr

0008

32-bit
data

Addr

0000

Bytes

Addr

CSE351, Winter 2021

Addr.
(hex)

0x00
0x01
0x02.

0004 |
7

Addr

0008

Addr

0012

0x03
0x04
Ox05
0Ox06
0Ox07
0Ox08
0x09
Ox0A
Ox0B
Ox0C
Ox0D
OxOE
OxOF

17

YA UNIVERSITY of WASHINGTON M1-L2: Memory and Data | CSE351, Winter 2021

A Picture of Memory (64-bit view)

+» A “64-bit (8-byte) word-aligned” view of memory:

" |n this type of picture, each row is composed of 8 bytes

" Each cell is a byte one Word
I

" An aligned, 64-bit : ‘
Chunk Of data WI” Address Ox’OO Ox’01 Ox’OZ Ox’03 Ox’04 Ox’05 Ox’06 Ox’07
, ox00 [¥ T %1 %1 ¥1 ¥ 1 ¥ ¥ ¥

fit on one row x"‘b(' I -

« Ox08

**(, 0x10
Ox18
0x20
Ox28
0x30
Ox38
0x40
Ox48

18

YA UNIVERSITY of WASHINGTON M1-L2: Memory and Data | CSE351, Winter 2021

A Picture of Memory (64-bit view)

+» A “64-bit (8-byte) word-aligned” view of memory:

" |n this type of picture, each row is composed of 8 bytes
" Each cell is a byte

one \l/vord
= An aligned, 64-bit l \
chunk of data will Address 0X00 0x01 0x02 0x03 0x04 0x05 0x06 0x07
. Ox00 [% 7 ¥ 1 ¥1 ¥1 ¢ 1 ¥ ¥ v_)
fit on one row —_——
0x08 LA} i ni ninl nl ni aD
OXl_O, g8 —OX09 OXOfOXOB OXOU OXOD UXOE Ox(F
0x18 R
00 [
gs: N N T S
S N N T S
s N N N
o N N N
0x48 : ! : : : : |

19

YA UNIVERSITY of WASHINGTON M1-L2: Memory and Data | CSE351, Winter 2021

[64-bit example J
()

pointers are 64-bits wide

Addresses and Pointers

big-endian

+ An address refers to a location in memory adaress sgecc
. . . A= 2
+» A pointer is a data object that holds an address

= Address can point to any data
+» Value 504 stored at

Address
address 0x08 0x00 | ¢ ¢ & i r
= 504. = 1F8 0x08 [00:00;00:00:00:00;01:F8
- 0x00..0001F8 2X10 N S I N
B 0x18 AN
+ Pointer stored at 0x20 4
: 0x28 1
0x38 points to 0x30 —
address 0x08 0x38 1000008 K
0x40 R

0x48

20

YA UNIVERSITY of WASHINGTON M1-L2: Memory and Data | CSE351, Winter 2021

[64-bit example J
()

pointers are 64-bits wide

Addresses and Pointers

big-endian
« An address refers to a location in memory

+» A pointer is a data object that holds an address

= Address can point to any data Do dw’(’\:)
+ Pointer r :
ointe §to ed at rddroce (a‘*"" "y
0x48 points to 0x00 N S S A R
address 0x38 0x08 [00:00:00:00:00:00:01 T8
0x10 I I
" Pointer to a pointer! (5,13 .
» Is the data stored ~ 9x20 R
, Ox28 L "}
at Ox08 a pointer? 43¢ 2
" Could be, depending 0x38 *00 000008
PENEIE 0xa0 — L e

on how you use it

0x48 (00! oo 00:00*°00:00:00:38

21

YA UNIVERSITY of WASHINGTON M1-L2: Memory and Data | CSE351, Winter 2021

Byte Ordering

+» How should bytes within a word be ordered in
memory?

" Want to keep consecutive bytes in consecutive addresses

= Example: 4-byte (32-bit) int:
ox|A1[B2|C3pa) — ox[>M\83 (82 [AT]

4

» By convention, ordering of bytes called endianness
" The two options are big-endian and little-endian

- In which address does the least significant byte go?

- Based on Gulliver’s Travels: tribes cut eggs on different sides
(big, little)

22

YW UNIVERSITY of WASHINGTON M1-L2: Memory and Data |

Byte Ordering

+ Big-endian (SPARC, z/Architecture)
= |east significant byte has highest address

+ (Little-endian (x86, x86-64)

" |Least significant byte has|lowest address
+» Bi-endian (ARM, PowerPC)
" Endianness can be specified as big or little

‘\%% LS®
+» Example: 4-byte data OxA1B2C3D4 at address 0x100

0x100 Ox101 Floz 08
Big-Endian Al | B2)| c3 | D4
L awe

0x100 0x101 0x102 0x103
Little-Endian D4 | C3 | B2 | A1

CSE351, Winter 2021

23

YA UNIVERSITY of WASHINGTON M1-L2: Memory and Data | CSE351, Winter 2021

Decimal: 12345
0011 0000 0011 1001

Byte Ordering Examples |, 5 ™" ",

X 1A32, x86-64 SPARC
%’U (little-endian) (big-endian)

int x = 12345; \,‘X"/ 0x00 0x00

// or x = 0x3039; 0x01 0x01

0x02 0x02

0x03 0x03

LU 32-bit ““*%Zf‘&?“ 32-bit 64-bit

long int y = 12345; |1A32 x86-64 SPARC SPARC
// or v = 0x3039; E)xoo 39 |—| 39 | 0x00 oxo0| 00 00 |ox00
0x01] 30 f—| 30 | Ox01 ox01| 0O 00 |oxo1
0x02] 00 f—| 00 | 0x02 ox02| 30 00 |ox02
0x03| 00 l—| 00 | 0x03 oy03| 39 00 |ox03
(A long intis — 88 0x04 00 |oxo4
: 0X05 00 |oxos
the size of a word) 30 1 o0t 20005
L 00 | oxo7 39 |ox07

24

WA UNIVERSITY of WASHINGTON M1-L2: Memory and Data | CSE351, Winter 2021

Polling Question

«» We store the value Ox 01 02 03 04 as a word at
address 0x100 in a big-endian, 64-bit machine

« What is the byte of data stored at address 0x104?
" \/ote in Ed Lessons y = 8 —ba\es $\a~\

- _Z Y.L
A S v oy DO Y R P

B. 0x40

_ 00 oo 0000 61 62 03 O™
(T 0x01) o

D. 0x10
E. We're lost...

25

YA UNIVERSITY of WASHINGTON M1-L2: Memory and Data | CSE351, Winter 2021

Endianness

+ Endianness only applies to memory storage
+» Often programmer can ignore endianness because it
is handled for you

" Bytes wired into correct place when reading or storing from
memory (hardware)

" Compiler and assembler generate correct behavior (software)
+» Endianness still shows up:

" Logical issues: accessing different amount of data than how
you stored it (e.g., store int, access byte as a char)

" Need to know exact values to debug memory errors
= Manual translation to and from machine code (in 351)

26

CSE351, Winter 2021

YW UNIVERSITY of WASHINGTON M1-L2: Memory and Data |

Challenge Question

+» Assume the state of memory is as shown below for a
little-endian machine.

0x100 0x107
OF | 23 | B7 | C8 | 55 | DO | 00 | O4 | 08
_» Y= loohes
+ If we (1) read the value of an int at address 0x102, (2)
add 8 to it, and then (3) store the new value as an int
at address 0x104, which of the following addresses
retain their original value?

[A. > k Ox104] C. 0x105 D. 0x107

27

YA UNIVERSITY of WASHINGTON M1-L2: Memory and Data | CSE351, Winter 2021

Summary

+» Memory is a long, byte-addressed array _
s =

" Word size bounds the size of the address space and memory
= Different data types use different number of bytes

= Address of chunk of memory given by address of lowest byte
in chunk

" Object of K bytes is aligned if it has an address that is a
multiple of K

+» Pointers are data objects that hold addresses

+» Endianness determines memory storage order for
multi-byte data

28

