
CSE 351 AA/BA
Section 7

Caches and Processes
With 

1



Administrivia

● Office Hours
○ Office hours starting at 1, 3, and 5pm (Colton/Tim/Kashish)

● Homework 17
○ Due Friday, August 6

● Lab 4
○ Due Monday, August 9



Download the Handout!

https://courses.cs.washington.edu/courses/cse351/21su/sec
tions/07/cse351_sec7.pdf

Solutions will be posted this evening.

3



Code Analysis

4



Cache Review

● Capacity (C) = total size of the cache in bytes
● Block Size (K) = # of bytes in a cache line
● Associativity (E) = # of blocks in a set
● m = address width in bits
● # sets = C/K/E
● t = m - s - k
● Replacement policy:

○ Generally LRU or not most recently used
5



Write Time

We’ve seen a lot of cache reads, but what about writes?

The cache typically stores a copy of the contents of memory (think about the 
memory hierarchy).

How do we know if and when we copy from the cache back to memory? 

6



Write Review: Hit!

● Write through

○ Write to “next level” directly

● Write back

○ Defer writing until cache line we wrote to is evicted

○ We need to keep track of whether line has been modified

■ This requires we store additional information: the dirty bit

■ We only write to memory if our block is replaced and the dirty bit was set

7



Write Review: Miss!

● Write allocate (fetch on write)

○ Load data into cache first (akin to a read)

○ Then write to cache

○ Good for locality if adjacent writes or reads follow

● No-write allocate (write around)

○ Write to “next level” directly

We will usually see write back, write allocate

8



Code Analysis (a)

● C = 1 KiB, K = 16B, E = 1 (direct mapped)
● array is a 64x64 2D int array

● Miss Rate: 

 

for (int i = 0; i < 64; i++)
  for (int j = 0; j < 64; j++)
    array[i][j] = 0; // assume &array = 0x600000

4 bytes per int

16 bytes per block

1 block

4 ints
= =   0.25   =   25%

9



Code Analysis (b) and (c)

● What CODE changes could affect the miss rate?
○ Discussion:

● What CACHE changes could affect the miss rate?
○ Discussion:

● change the access pattern
● change the array type or structure

● only changing the block size (K)

10



Cache Practice Problem

11



Practice Exam Problem (a)

We have a 64 KiB address space. The cache is a 1 KiB, direct-mapped cache 
using 256-byte blocks and write-back and write-allocate policies.

What is the TIO address breakdown?

Tag Index Offset

6 2 8

64 KiB = 216 B;  1 KiB = 210 B;  256 B = 28 B

12



Tag OffsetIx

Practice Exam Problem (b)

Will we write to memory?
R 0x4C00, W 0x5C00

Tag Index Offset

6 2 8

Set Valid Dirty Tag

00 0 0 1000 01
01 1 1 0101 01
10 1 0 1110 00
11 0 0 0000 11

0x4C00 → 0100 1100 0000 0000

0x5C00 → 0101 1100 0000 0000

READ 0x4C00
Did we hit?
Is set 00 dirty?

13



Tag OffsetIx

Practice Exam Problem (b)

Will we write to memory?
R 0x4C00, W 0x5C00

Tag Index Offset

6 2 8

Set Valid Dirty Tag

00 1 0 0100 11
01 1 1 0101 01
10 1 0 1110 00
11 0 0 0000 11

0x4C00 → 0100 1100 0000 0000

0x5C00 → 0101 1100 0000 0000

WRITE 0x5C00
Did we hit?
Is set 00 dirty?

14



Tag OffsetIx

Practice Exam Problem (b)

Will we write to memory?
R 0x4C00, W 0x5C00

Tag Index Offset

6 2 8

Set Valid Dirty Tag

00 1 0 0101 11
01 1 1 0101 01
10 1 0 1110 00
11 0 0 0000 11

0x4C00 → 0100 1100 0000 0000

0x5C00 → 0101 1100 0000 0000

WRITE 0x5C00
Read 0x5C00 first

15



Tag OffsetIx

Practice Exam Problem (b)

Will we write to memory?
R 0x4C00, W 0x5C00

Tag Index Offset

6 2 8

Set Valid Dirty Tag

00 1 1 0101 11
01 1 1 0101 01
10 1 0 1110 00
11 0 0 0000 11

0x4C00 → 0100 1100 0000 0000

0x5C00 → 0101 1100 0000 0000

Dirty bit set, but no 
memory write has 
occurred

16



You try!

Work on the rest of (b) and (c).

Also try (d) and (e) if you have time!

We will reconvene in about 7 minutes and discuss the answers.

17



Tag OffsetIx

Practice Exam Problem (b)

Will we write to memory?
W 0x5500, W 0x7A00

Line Valid Dirty Tag

00 0 0 1000 01
01 1 1 0101 01
10 1 0 1110 00
11 0 0 0000 11

0x5500 → 0101 0101 0000 0000

0x7A00 → 0111 1010 0000 0000

● First write is a hit; nothing is evicted.
● Second write evicts old data in set 10, but nothing is written to memory 

as the dirty bit was not set.

18



Tag OffsetIx

Practice Exam Problem (b)

Will we write to memory?
W 0x2300, R 0x0F00

Line Valid Dirty Tag

00 0 0 1000 01
01 1 1 0101 01
10 1 0 1110 00
11 0 0 0000 11

0x2300 → 0010 0011 0000 0000

0x0F00 → 0000 1111 0000 0000

● The write evicts line 3, loads it in, and sets the dirty bit.
● The read evicts line 3, but the dirty bit was set, so we must write the 

changed value back to memory before we perform the read!

19



Tag OffsetIx

Practice Exam Problem (b)

Will we write to memory?
R 0x3000, R 0x3000

Line Valid Dirty Tag

00 0 0 1000 01
01 1 1 0101 01
10 1 0 1110 00
11 0 0 0000 11

0x3000 → 0011 0000 0000 0000

● The first read evicts line 0, but it wasn’t dirty so we don’t write back to 
memory.

● The second read is a read hit. No writing  occurs.

20



Practice Exam Problem (c)

Choose LEAP to produce a hit 
rate of 15/16.

Hint: |= is two accesses

#define ARRAY_SIZE 8192
char string[ARRAY_SIZE]; // &string = 0x8000
for (i = 0; i < ARRAY_SIZE; i += LEAP) {
  string[i] |= 0x20; // to lower
}

● Block size is 256; per block, want 16 accesses total with one miss
● |= is two accesses, so we want (256 / 16) / 2 = 8 loop iterations per block 

(note the access pattern)
● To get 8 iterations per block, LEAP must be 256 / 8 = 32

21



Practice Exam Problem (d)

If LEAP is 64, how could we 
increase the hit rate?

#define ARRAY_SIZE 8192
char string[ARRAY_SIZE]; // &string = 0x8000
for (i = 0; i < ARRAY_SIZE; i += LEAP) {
  string[i] |= 0x20; // to lower
}

Bigger Blocks Bigger Cache Add L2 Cache Increase LEAP

This is the only option which reduces the miss rate, as it 
causes more to be loaded on each miss.

22



Practice Exam Problem (e)

What are the three kinds of 
cache misses, and which one 
is occurring here?

#define ARRAY_SIZE 8192
char string[ARRAY_SIZE]; // &string = 0x8000
for (i = 0; i < ARRAY_SIZE; i += LEAP) {
  string[i] |= 0x20; // to lower
}

Compulsory Conflict Capacity

We miss because we are loading something new, not because of the 
size of our working set or conflicts.

23



Benedict Cumbercache

Given the following sequence of access results (addresses are given in decimal) 
on a cold/empty cache of size 16 bytes, what can we deduce about its 
properties?  Assume an LRU replacement policy.

(0, Miss), (8, Miss), (0, Hit), (16, Miss), (8, Miss)

24



Benedict Cumbercache

(0, M) (8, M) (0, H) (16, M) (8, M)

What can we say about the block size?

The block size must be no more than 8, because the initial 
miss at 0 will load in the aligned block from addresses (0) 
to (size - 1), but we miss when accessing 8 afterwards.

25



Benedict Cumbercache

(0, M) (8, M) (0, H) (16, M) (8, M)

If block size is 8, what about associativity?

DIRECT-MAPPED

1st access misses (loads in block 0 [0 - 7])
2nd access misses (loads in block 1 [8 - 15])
3rd access hits (0 is already loaded in)
4th access misses (evicts block 0, loads in [16 - 23])
5th access HITS (8 is still loaded in)

So we can’t have direct mapped!
26



Benedict Cumbercache

(0, M) (8, M) (0, H) (16, M) (8, M)

If block size is 8, what about associativity?

2-WAY ASSOCIATIVE

1st access misses (loads in block 0 [0 - 7])
2nd access misses (loads in block 1 [8 - 15])
3rd access hits (0 is already loaded in)
4th access misses (evicts LRU block 1, loads in [16 - 23])
5th access misses (4th access evicted 8)

The cache could be 2-way associative!
27



Benedict Cumbercache

(0, M) (8, M) (0, H) (16, M) (8, M)

If block size is 8, what about associativity?

4-WAY ASSOCIATIVE

The cache size is 16 B and the block size is 8 B, so we 
can’t have a 4-way associative cache as one set would be 

bigger than the entire capacity!

28



Processes

29



What is a Process?

Processes are an abstraction which represent an instance of a running program. 
They are distinct from a “program” or a “processor.”

Exceptional control flow allows many processes to be run on a single processor 
at (perceptibly) the same time.

30



It’s Forkin’ Time

We can create a clone of our currently running process with fork(). It’s a little 
special because it has two return values: 0 to the child, and the child’s PID 
(process ID) to the parent. This allows our code to distinguish the parent from the 
child.

We’ll focus on fork today, but there are many system calls to manage processes:
● exec*() - family of operations to replace current proc.
● getpid() 
● exit()
● wait(), waitpid()

31



Multiple Processes

Can we predict the execution order of processes?

Not really!

The OS will switch between running processes. Each process runs sequentially, 
but users won’t be able to predict execution order of different processes.

Most machines these days have multiple processors… but we’ll stick with just 
one for now!

32



Exercise
What are all four possible 

outputs for this code?

int x = 7;
if( fork() ) {
  x++;
  printf(" %d ", x);
  fork();
  x++;
  printf(" %d ", x);
} else {
  printf(" %d ", x);
} 

33



Process Graphs

We can trace this program’s execution diagrammatically:

int x = 7;
if( fork() ) {
  x++;
  printf(" %d ", x);
  fork();
  x++;
  printf(" %d ", x);
} else {
  printf(" %d ", x);
} 

x = 7

34



Process Graphs

We can trace this program’s execution diagrammatically:

int x = 7;
if( fork() ) {
  x++;
  printf(" %d ", x);
  fork();
  x++;
  printf(" %d ", x);
} else {
  printf(" %d ", x);
} 

x = 7

35



Process Graphs

We can trace this program’s execution diagrammatically:

int x = 7;
if( fork() ) {
  x++;
  printf(" %d ", x);
  fork();
  x++;
  printf(" %d ", x);
} else {
  printf(" %d ", x);
} 

x = 7

x = 8 x = 7

fork returned 0 
to child

fork returned 
(PID) to parent

36



Process Graphs

We can trace this program’s execution diagrammatically:

int x = 7;
if( fork() ) {
  x++;
  printf(" %d ", x);
  fork();
  x++;
  printf(" %d ", x);
} else {
  printf(" %d ", x);
} 

x = 7

x = 8
“7”

x = 7
“8”

37



Process Graphs

We can trace this program’s execution diagrammatically:

int x = 7;
if( fork() ) {
  x++;
  printf(" %d ", x);
  fork();
  x++;
  printf(" %d ", x);
} else {
  printf(" %d ", x);
} 

x = 7

x = 8
“7”

x = 7
“8”

38



Process Graphs

We can trace this program’s execution diagrammatically:

int x = 7;
if( fork() ) {
  x++;
  printf(" %d ", x);
  fork();
  x++;
  printf(" %d ", x);
} else {
  printf(" %d ", x);
} 

x = 7

x = 8
“7”

x = 7
“8”

x = 9 x = 9

39



Process Graphs

We can trace this program’s execution diagrammatically:

int x = 7;
if( fork() ) {
  x++;
  printf(" %d ", x);
  fork();
  x++;
  printf(" %d ", x);
} else {
  printf(" %d ", x);
} 

x = 7

x = 8
“7”

x = 7
“8”

x = 9 x = 9

“9” “9”

40

What are the 
four possible 
outputs?



Process Graphs

We can trace this program’s execution diagrammatically:

int x = 7;
if( fork() ) {
  x++;
  printf(" %d ", x);
  fork();
  x++;
  printf(" %d ", x);
} else {
  printf(" %d ", x);
} 

x = 7

x = 8
“7”

x = 7
“8”

x = 9 x = 9

“9” “9”

What are the 
four possible 
outputs? 7899

8799
8979
8997

41



That’s All, Folks!

Thanks for attending section! Feel free to stick around for a bit if you have quick 
questions (otherwise post on Ed or go to OH).

See you all next week and good luck on lab 4!

42


