
 

CSE 351 Section 7 – More Caches, Processes & Concurrency 
Hi there! Welcome back to section, we’re happy that you’re here   

 
 
Code Analysis 

Consider the following code that accesses a two-dimensional array (of size 64×64 ints).   

Assume we are using a direct-mapped, 1 KiB cache with 16 B block size, and that the cache starts cold.                             
Also assume that the loop variables i and j are stored in registers. 

 for (int i = 0; i < 64; i++) 
     for (int j = 0; j < 64; j++) 
         array[i][j] = 0;         // assume &array = 0x600000 

a) What is the miss rate of the execution of the entire loop? 
Every block can hold 4 ints (16B/4B per int), so we will need to pull a new block from memory every 4 

accesses of the array. This means this miss rate is  
   

   
=  

 

 
 = 0.25 = 25% 

b) What code modifications can change the miss rate?  Brainstorm before trying to analyze. 
Possible answers: switch the loops (i.e. make j the outer loop and i the inner loop), switch j and i in the 
array access, make the array a different type (e.g. char[ ][ ], long[ ][ ], etc.), make array an array of Linked 
Lists or a 2-level array, etc. 

(NOTE: Answer to part (c) on next page) 
 

c) What cache parameter changes (size, associativity, block size) can change the miss rate? 
Let’s consider each of the three parameters individually. 
 
First, let’s consider modifying the size of the cache. Will it change the miss rate? 
No, it doesn't matter how big the cache is in this case (if the block size doesn't change). We will still be 
pulling the same amount of data each miss, and we will still have to go to memory every time we exhaust 
that data 
 
Next, let’s consider modifying the associativity of the cache. Will it change the miss rate? 
No, this is helpful if we want to reduce conflict misses, but since the data we're accessing is all in contiguous 
memory (thanks arrays!), booting old data to replace it with new data isn't an issue. 
 
Finally, let’s consider modifying the block size of the cache. Will it change the miss rate? 
Yes, bigger blocks mean we pull bigger chunks of contiguous elements in the array every time we have a 
miss. Bigger chunks at a time means fewer misses down the line. Likewise, smaller blocks increase the 
frequency with which we need to go to memory (think back to the calculations we did in part (a) to see 
why this is the case) 
 
So, in conclusion, changing block size can change the miss rate. Changing size or associativity will NOT 
change the miss rate. 
 
NOTE: Remember that the results we got were for this specific example. There are some code examples in 
which changing the size or associativity of the cache will change the miss rate. 

  

  



 

Practice Cache Exam Problem (11 pts) 
We have a 64 KiB address space.  The cache is a 1 KiB, direct-mapped cache using 256-byte blocks with write-back 
and write-allocate policies. 
 

a) Calculate the TIO address breakdown for: 

Tag Index Offset 

16 − 2 − 8 = 𝟔 = = 2    2 2 = 256  8 

 

b) During some part of a running program, the cache’s management bits are as shown below.  Four options for the 
next two memory accesses are given (R = read, W = write).  Circle the option that results in data from the 
cache being written to memory. 

Line Valid Dirty Tag 

00 0 0 1000 01 

01 1 1 0101 01 

10 1 0 1110 00 

11 0 0 0000 11 

 
Note that, since the last 8 bits form the offset, we can ignore the last two hex digits for this problem. 

 
 (1) R 0x4C00, W 0x5C00 (2) W 0x5500, W 0x7A00 

(3) W 0x2300, R 0x0F00 (4) R 0x3000, R 0x3000 

 
c) The code snippet below loops through a character array.  Give the value of LEAP that results in a Hit Rate of 

15/16. 
#define ARRAY_SIZE 8192 

char string[ARRAY_SIZE];   // &string = 0x8000 

for(i = 0; i < ARRAY_SIZE; i += LEAP) { 

 string[i] |= 0x20;   // to lower 

} 

32 

 
 
 

 

 

                    R 0b0011 0000… , R 0011 0000… 
Line 0 is initially not dirty (and invalid) so nothing is 
written back to memory from either of these reads 
(which both read from the same line). 

 216  = 64 KiB, so we 
have 16 bit addresses. 

                    R 0b0100 1100… , W 0b0101 1100… 
The read evicts line 0, but the dirty bit was not set so 
nothing is written (also, line 0 was initially invalid). 
The write overwrites line 0 again but since the cache 
is write-back nothing is written to memory. 
 

                    W 0b01010101… , W 0b0111 1010… 
The first write doesn’t evict anything because the 
tags match. The second write evicts the old data but 
the dirty bit was not set so the old data doesn’t need 
to be written back to memory. 
 

                    W 0b0010 0011… , R 0000 1111… 
The write evicts line 3 which was invalid and also 
not dirty, so nothing is written. The read, however, 
also maps to line 3 so it must write the value 
changed in the write back to memory before it can 
update the cache.  
 

Note that |= is a read and a write (i.e., two accesses). To obtain a 15/16 hit rate, 

we want to perform = 16 accesses per block (the first access will be a miss, 

subsequent accesses will be hits). However, since each loop iteration performs 

two accesses, we want to loop 8 times per block. Therefore LEAP = = 32. 



 

 Larger block size mean that we can fit more bytes in a block, so more information will be pulled in 
on each miss. Therefore, hit rate will increase. 

 Increasing cache size will not change hit rate since we are accessing data contiguously. 
 Adding a L2 cache will not change the hit rate (it will just decrease the miss penalty). 
 Increasing LEAP will increase the miss rate since data accessed will be further apart in memory. 

d) For the loop shown in part (c), let LEAP = 64.  Circle ONE of the following changes that increases the hit rate: 

 

Increase Block Size Increase Cache Size Add an L2 Cache Increase LEAP 

 

 

 

e) What are the three kinds of cache misses? When do they occur? Circle the kind of miss that happens in part (c). 

Compulsory: occurs the first time 
a block is accessed—no way to 
avoid this (a.k.a. cold miss) 

Conflict: occurs when multiple 
blocks map to the same slot in 
the cache—could be avoided if 
the cache had a greater 
associativity, or perhaps if using 
different access pattern 

Capacity: occurs when the set of 
active cache blocks (“working 
set”) evict each other because 
there’s not enough space in the 
cache—even if it were fully-
associative, they wouldn’t all fit 

 

Benedict Cumbercache 

Given the following sequence of access results (addresses are given in decimal) on a cold/empty cache of size 16 
bytes, what can we deduce about its properties?  Assume an LRU replacement policy. 
 

        (0, Miss), (8, Miss), (0, Hit), (16, Miss), (8, Miss) 

1) What can we say about the block size? 

After access (1), values from address 0 to  address [block size - 1] will be put in the cache. This is because 
caches load a full block from memory at a time and 0 will always be aligned to the beginning of a block. 
Thus, if access (2) to address 8 is a miss, it means that the block size must be≤  8. 

 
2) Assuming that the block size is 8 bytes, can this cache be… (Hint: draw the cache and simulate it) 

a. Direct-mapped? 

Index Address (not tag) 

0 0x0 0x10 

1 0x8 

Does this cache work for the access results? 

Yes, Yes, Yes, Yes (evict 0), No (8 would still be in cache) 

 

b. 2-way set associative? 

Index Address (not tag) 

0 0x0 

0 0x8 0x10 

 

 

 

(1) (2) (3) (4) (5) 



 
Does this cache work for the access results? 

Yes, Yes, Yes, Yes (evict 8 b/c it’s the least recently used), Yes (8 is no longer in cache) 

 

c. 4-way set associative? 

No, because the block size is 8, multiplied by 4 lines per set, and that’s 32B, which is already 
bigger than the entire cache. 

Fork and Concurrency 
Consider this code using Linux’s fork: 

    int x = 7; 
    if( fork() ) { 
        x++; 
        printf(" %d ", x);  
        fork(); 
        x++; 
        printf(" %d ", x); 
    } else { 
        printf(" %d ", x); 
    } 

What are all the different possible outputs (i.e. order of things printed) for this code? 
(Hint:  there are four of them.) 

Note: fork() returns 0 to the child, and the child’s process ID (PID) to the parent. 

From our first fork, we know child 1 will print “7”, but since this print statement is not dependent on 
any other code (besides the initial fork()), it could be printed at any time. 

We also know the parent will have to print “8” before the second call to fork(), meaning that the “8” 

is printed before the “9”s. Since the parent and child 2 both print out “9”, even if the ordering of their 
prints changes, the output will not. 

 

Possible orderings: 
● 7 8 9 9 
● 8 7 9 9 
● 8 9 7 9 
● 8 9 9 7 

 

parent 

child 1 

child 2 


