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CSE 351 Section 3 –Floating Point and x86-64 Assembly 
Welcome back to section, we’re happy that you’re here ☺ 

Goals of Floating Point 

Representation should include:  [1] a large range of values (both very small and very large numbers),   [2] a high 
amount of precision, and  [3] real arithmetic results (e.g.  ∞ and NaN). 

IEEE 754 Floating Point Standard 

The value of a real number can be represented in scientific binary notation as:   

Value = (-1)sign × Mantissa2 × 2Exponent = (-1)S × 1.M2 × 2E-bias 

The binary representation for floating point values uses three fields: 

• S:  encodes the sign  of the number (0 for positive, 1 for negative) 
• E:  encodes the exponent  in biased notation with a bias of 2w-1-1 
• M:  encodes the mantissa (or significand, or fraction) – stores the fractional portion, but does not include 

the implicit leading 1.  
 

 S E M 
float 1 bit 8 bits 23 bits 
double 1 bit 11 bits 52 bits 

 
How a float is interpreted depends on the values in the exponent and mantissa fields: 

E M Meaning 

0 anything denormalized number (denorm) 

1-254 anything normalized number 

255 zero infinity (∞) 

255 nonzero not-a-number (NaN) 

 

Exercises: 
 

Bias Notation 
 
1) Suppose that instead of 8 bits, E was only designated 5 bits. What is the bias in this case?               2(5 – 1) – 1 = 15 

 
2) Compare these two representations of E for the following values: 

 

Exponent E (5 bits) E (8 bits) 

1 1 0 0 0 0 
 

1 0 0 0 0 0 0 0 
 

0 0 1 1 1 1 
 

0 1 1 1 1 1 1 1 
 

-1 0 1 1 1 0 
 

0 1 1 1 1 1 1 0 
 

 
Notice any patterns? 
 
 The representations are the same except the length of number of repeating bits in the middle are different. 
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Floating Point / Decimal Conversions 
 
3) Convert the decimal number 1.25 into single precision floating point representation: 

0 0 1 1 1 1 1 1 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

 
4) Convert the decimal number -7.375 into single precision floating point representation: 

1 1 0 0 0 0 0 0 1 1 1 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

 
5) Add the previous two floats from exercise 7 and 8 together.      = -6.125 

Convert that number into single precision floating point representation: 

1 1 0 0 0 0 0 0 1 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

 
6)   Let’s say that we want to represent the number 3145728.125 (broken down as 221 + 220 + 2−3) 

a. Convert this number to into single precision floating point representation: 

0 1 0 0 1 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

b. How does this number highlight a limitation of floating point representation? 
Could only represent 2^21 + 2^20. Not enough bits in the mantissa to hold 2^-3, which caused rounding. 
 

7) What are the decimal values of the following floats? 

0x80000000 0xFF94BEEF 0x41180000 
 

–0 NaN +9.5 
 
 0x41180000 = 0b 0|100 0001 0|001 1000 0…0.  
 S = 0, E = 128+2 = 130 → Exponent = E – bias = 3, Mantissa = 1.00112 
 1.00112 × 23 = 1001.12 = 8 + 1 + 0.5 = 9.5 

Floating Point Mathematical Properties 

• Not associative: (2 + 250) – 250  !=  2 + (250 – 250) 

• Not distributive: 100 × (0.1 + 0.2)  !=  100 × 0.1 + 100 × 0.2 

• Not cumulative: 225 + 1 + 1 + 1 + 1  !=  225 + 4 
 

Exercises: 
8) Based on floating point representation, explain why each of the three statements above occurs. 
 

Associative: Only 23 bits of mantissa, so 2 + 250 = 250 (2 gets rounded off).  So LHS = 0, RHS = 2. 

Distributive: 0.1 and 0.2 have infinite representations in binary point (0.2 =  0. 0011̅̅ ̅̅ ̅̅ ̅
2), so the LHS and 

RHS suffer from different amounts of rounding (try it!). 

Cumulative: 1 is 25 powers of 2 away from 225, so 225 + 1 = 225, but 4 is 23 powers of 2 away from 225, so 
it doesn’t get rounded off. 

 
9) If x and y are variable type float, give two different reasons why (x+2*y)-y==x+y  might evaluate to false. 

 
(1) Rounding error:  like what is seen in the examples above. 
(2) Overflow:  if x and y are large enough, then x+2*y may result in infinity when x+y does not.  
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x86-64 Assembly Language 

Assembly language is a human-readable representation of machine code instructions (generally a one-to-one 
correspondence).  Assembly is machine-specific because the computer architecture and hardware are designed to 
execute a particular machine code instruction set. 

x86-64 is the primary 64-bit instruction set architecture (ISA) used by modern personal computers.  It was 
developed by Intel and AMD and its 32-bit predecessor is called IA32.  x86-64 is designed for complex instruction 
set computing (CISC), generally meaning it contains a larger set of more versatile and more complex instructions. 

For this course, we will utilize only a small subset of x86-64’s instruction set and omit floating point instructions. 

x86-64 Instructions 

The subset of x86-64 instructions that we will use in this course take either one or two operands, usually in the 
form:  instruction operand1, operand2.  There are three options for operands: 

• Immediate:  constant integer data (e.g.  $0x400, $-533) or an address/label (e.g. Loop, main) 

• Register:  use the data stored in one of the 16 general purpose registers or subsets (e.g. %rax, %edi) 

• Memory:  use the data at the memory address specified by the addressing mode  D(Rb,Ri,S) 
The operation determines the effect of the operands on the processor state and has a suffix (“b” for byte, “w” for 
word, “l” for long, “q” for quad word) that determines the bit width of the operation.  Sometimes the operation 

size can be inferred from the operands, so the suffix is omitted for brevity. 

x86 instructions English equivalent 

movq $351, %rax Move the number 351 into  8-byte (quad) register “rax” 

addq %rdi, %rsi Add the 64-bit value of %rdi to %rsi 

movq (%rdi), %r8 Move the 64-bit data at the address stored in %rdi to %r8 

leaq (%rax,%rax,8), %rax Compute 9 * %rax, and store the 64-bit result in %rax 

Exercises: 

1. [CSE351 Au14 Midterm]  Symbolically, what does the following code return? 

movl  (%rdi), %eax          # %rdi -> x;  r = *x 

leal  (%eax,%eax,2), %eax   # %rax -> r;  r = (*x) * 3 

addl  %eax, %eax            #             r = (*x)*3 + (*x)*3 

andl  %esi, %eax            # %rsi -> y;  r = ((*x)*6) & y 

subl  %esi, %eax            #             r = (((*x)*6) & y) - y  

ret 

 
 (((*x) * 6) & y) - y 

 
 
 
 

2. Log on to Gradescope and start the “GDB Tutorial (optional)” assignment. 
This includes the basic workflow on how to use GDB, and should prove very useful for Lab 2 and beyond 
(Q4 even includes a walkthrough of Lab 2 Phase 1). 


