L25: Java & C CSE351, Summer 2021

YA/ UNIVERSITY of WASHINGTON

Java and C

CSE 351 Summer 2021

Instructor:
Mara Kirdani-Ryan

Teaching Assistants:
Kashish Aggarwal

Nick Durand
Colton Jobs
Tim Mandzyuk

‘Home” by Andrew York

SERIOLSLY? THIS
THING RONS JAVA?
ITS SINGLE-PUORASE
HARDWARE.!

o\
d

T BET THEY ACTUALLY HIRED SONEONE
TO SPEND SIx MONTHS PORTING THIS
JW S0 THEY COULD WRITE THEIR 20

UNES OF CODE IN A FAMILIAR SETTING.

[|

WELL, YOU KNOW WHAT THEY SAY—
WHEN ALL YOU HAVE IS A PAIR OF
BOLT CUTTERS AND A BOTTLE OF VODKA,
EVERYTHING LOOKS UKE THE LOCKON
THE DOOR OF WOLF BLITZERS BOATHOUSE.

./
p

IMGLAD
YOU HAD A
NICE NIGHT.

https://xkcd.com/801/

https://xkcd.com/801/

YA UNIVERSITY of WASHINGTON L25: Java & C CSE351, Summer 2021

Gentle, Loving Reminders

- Lab 5 due tonight!!!!

* Reach out if you're using late days
- Unit Summary #3 due Friday!

* No late days!

- Section tomorrow is TA's Choice & time for
guestions
* See cool things! Ask your TAs questions!

YA UNIVERSITY of WASHINGTON L25:Java&C (CSE35 , Summer 2021

Course Evals are out!

I’d really appreciate feedback!
Only 15% so far, due friday!

o
e)

~ lam once again asking
for you to give feedback

YA UNIVERSITY of WASHINGTON L25: Java & C CSE351, Summer 2021

Javavs. C

- Reconnecting to Java (hello CSE143!)

* But now you know a lot more about what really
happens when we execute programs

- We've learned about the following items in C;
now we'll see what they look like for Java:

* Representation of data

* Pointers / references

* Casting

* Function / method calls including dynamic dispatch

CSE351, Summer 2021

w UNIVERSITY of WASHINGTON L25: Java & C

Worlds Colliding

- CSE351 has given you a “really different feeling”
about what computers do and how programs

execute

- We have occasionally contrasted to Java, but
CSE143 may still feel like “a different world”

* It's not — it’s just a higher-level of abstraction

e Connect these levels via
how-one-could-implement-Java in 351 terms

YA UNIVERSITY of WASHINGTON L25: Java & C CSE351, Summer 2021

Meta-point to this lecture

- None of the data representations we are going to
talk about are quaranteed by Java

- In fact, the language simply provides an
abstraction (Java language specification)
* Tells us how code should behave for different language

constructs, but we can't easily tell how things are really
represented

* But it is important to understand an implementation of
the lower levels — useful in thinking about your program

YA UNIVERSITY of WASHINGTON L25: Java & C CSE351, Summer 2021

Data in Java

- Integers, floats, doubles, pointers — same as C

* “Pointers” are called “references” in Java, but are much
more constrained than C’s general pointers

* Java’s portability-guarantee fixes the sizes of all types

- Example: int is 4 bytes in Java regardless of
machine

* No unsigned types to avoid conversion pitfalls
- Added some useful methods in Java 8 (also use
bigger signed types)
- null is typically represented as 0 but “you can't
tell”

W UNIVERSITY of WASHINGTON L25: Java & C CSE351, Summer 2021

Data in Java

. Much more interesting:
* Arrays
* Characters and strings
* Objects

WA UNIVERSITY of WASHINGTON L25: Java & C CSE351, Summer 2021

Data in Java: Arrays

- Every element initialized to 0 or null

- Length specified in immutable field at start of array
(int — 4 bytes)
* array.length returns value of this field

o Since it has this info, what can it do?

C: int array[5];
O 4 20
Java: int[] array = new int[5];

5 |oo]oo]oofoo]foo
0 4 20 24

YA UNIVERSITY of WASHINGTON L25: Java & C CSE351, Summer 2021

Data in Java: Arrays

- Every element initialized to 0 or null
- Length specified in immutable field at start of array
(int — 4 bytes)
* array.length returns value of this field
- Every access triggers a bounds-check
* Code is added to ensure the index is within bounds
* Exception if out-of-bounds

C: int array[5]; To speed up bounds-checking:

* Length field is likely in cache

* Compiler may store length field
0 4 20 in register for loops

Java: int[] array = new int[5]; « Compiler may prove that some
checks are redundant

22| 22|22 22] 22

5 |oo]oo]oofoo]foo
0 4 20 24

10

YA/ UNIVERSITY of WASHINGTON

Data in Java: Characters & Strings

- Two-byte Unicode instead of ASCII

L25: Java & C

* Represents most of the world’s alphabets

- String not bounded by a '\0"' (null character)
* Bounded by hidden length field at beginning of string

- All String objects read-only (vs. StringBuffer)

Example: the string “CSE351”

C:
(ASCII)

Java:
(Unicode)

43

53

45

33

35

31

\O

CSE351, Summer 2021

43

00

53

00

45

00

33

00

35

00

31

00

16

11

CSE351, Summer 2021

W UNIVERSITY of WASHINGTON L25: Java & C

Data in Java: Objects

- Data structures (objects) are always stored by reference,
never stored “inline”
* Include complex data types (arrays, objects, etc.) using references

C: Java:

struct rec { class Rec {
int 1i; int 1i;
int a[3]; int[] a = new int[3];
struct rec *p; Rec p;

}i

= a[] stored “inline” as part of struct }

= a stored by reference in object

—
a0 ila ;| p!

0 4 16 12

YA UNIVERSITY of WASHINGTON L25: Java & C CSE351, Summer 2021

Pointer/reference fields and variables

14 7

- In C, we have “->" and “." for field selection depending
on whether we have a pointer to a struct or a struct

* (*r).a IS so common it becomes r->a

- InJava, all non-primitive variables are references to
objects
* We always use r.a notation
* But really follow reference to r with offset to a, just like r->ain C
-C§o no Java field needs more than 8 bytes

Java:
struct rec *r = malloc(...); r = new Rec()
struct rec r2; r2 = new Rec();
r->1 = val; r.i = val;
r->al[2] = val; r.al2] = val;
r->p = &r2; r.p = r2;

13

YA/ UNIVERSITY of WASHINGTON

L25: Java & C

Pointers/References

o Pointers in C can point to any memory address

o References in Java can only point to [the starts of] objects
* Can only be dereferenced to access a field or element of that

C: object Java:

struct rec { class Rec {
int 1i; int 1i;
int a[3]; int[] a = new int[3];
struct rec *p; Rec p;

| }

struct rec* r = malloc(..); Rec r = new Rec();

some fn(&(r->alll)); // ptr some fn(r.a, 1); // ref, index
r X r f“
A /[“ila | o!
ila; | P J 0 4 ‘12 20
0O 4 16 24 3 |int[3]
O 4 1o 14

CSE351, Summer 2021

L25: Java & C CSE351, Summer 2021

YA/ UNIVERSITY of WASHINGTON

Casting in C (example from Lab 5)

- Can cast any pointer into any other pointer
* Changes dereference and arithmetic behavior

struct BlockInfo {
size t sizeAndTags;
struct BlockInfo* next;

%* 5
struct BlockInfo* prev; Cast b into char * to
do unscaled addition

};
typedef struct BlockInfo BlockInfo;

Cast back into
RlockInfo * to use
as BlockInfostruct

int x;
BlockInfo *b;
BlockInfo *newBlock;

newBlock = (BlockInfo *) ((char *) b + x);
\ %
s{n|p S|N|p
15

YA/ UNIVERSITY of WASHINGTON

L25: Java & C

CSE351, Summer 2021

Type-safe casting in Java
- Can only cast compatible object references

* Based on class hierarchy

class Object {

}

Vehicle

Boat
Car

Vehicle
Vehicle

Car

Car

Boat

Car
Car

v_

bl
cl

vl
v2
c2
c3

b2

cd =
ch =

new Vehicle () ;

= new Car () ;
= vl;
= new Boat /() ;

class Vehicle {
int passengers;

}

class Boat extends Vehicle {
int propellers;

}

class Car extends Vehicle {
int wheels;

}

// super class of Boat and Car
= new Boat () ; // |--> sibling
= new Car () ;

// |--> sibling

new Vehicle () ;

(Boat)

(Car)
(Car)

A

v2;
bl;

16

YA UNIVERSITY of WASHINGTON L25: Java & C CSE351, Summer 2021

Type-safe casting in Java

- Can only cast compatible object references
° Based on CIaSS hierarchy class Boat extends Vehicle {

int propellers;

}

class Object { class Vehicle {
> int passengers;

} }

class Car extends Vehicle {
int wheels;

}

Vehicle v = new Vehicle(); // super class of Boat and Car

Boat bl = new Boat(); // |--> sibling

Car cl = new Car(); // |—--> sibling

Vehicle vl = new Car(); <— / Everything needed for Vehiclealsoin Car
Vehicle v2 = vl; <4+— / vlisdeclared astype Vehicle

Car c?2 = new Boat(); <4— X Compiler error: Incompatible type — elements in

Car that are not in Boat (siblings)
Car c3 = new Vehicle () ;

Boat b2 = (Boat) v;

Car c4d = (Car) v2;
Car chb = (Car) Dbl;

17

YA UNIVERSITY of WASHINGTON L25: Java &C

Polling Question [Java I]

- Given:
Vehicle v = new Vehicle () ;

- What happens with this line of code:
Boat b2 = (Boat) v;

)
A 4
.w Compiler error
) Compiles fine, then Run-time error
&

CSE351, Summer 2021

18

WA UNIVERSITY of WASHINGTON L25: Java & C CSE351, Summer 2021

Type-safe casting in Java

- Can only cast compatible object references
° Based on CIaSS hierarchy class Boat extends Vehicle {

int propellers;

}

class Object { class Vehicle {
> int passengers;

} })

class Car extends Vehicle {
int wheels;

Vehicle v = new Vehicle(); // super class of Boat and Car

Boat bl = new Boat(); // |--> sibling

Car cl = new Car(); // |—--> sibling

Vehicle vl = new Car(); <— / Everything needed for Vehiclealsoin Car

Vehicle v2 = vl; <4+— / vlisdeclared astype Vehicle

Car c?2 = new Boat(); <4— X Compiler error: Incompatible type — elements in
Car that are not in Boat (siblings)

Car c3 = new Vehicle(); <w— X Compiler error: Wrong direction —elements Car
notin Vehicle (wheels)

Boat b2 = (Boat) v; <4— X Runtime error: Vehicle does not contain all
elements in Boat (propellers)

Car cd = (Car) v2; <4— / v2referstoa Car at runtime

Car c5 = (Car) bl; <— X Compiler error: Unconvertable types—Db1 is

declared as type Boat 19

YA/ UNIVERSITY of WASHINGTON

L25: Java & C

Java Object Definitions

CSE351, Summer 2021

class Point {

<€

double x; }

double vy;
[<

Point ()

fields

x = 0;
y = 07

return (x == p.x)

}

Point p

new Point () ; <

boolean samePlace (Point p) {

&& (y == p.vy) s

constructor

—

creation

20

YA UNIVERSITY of WASHINGTON L25: Java & C CSE351, Summer 2021

Java Objects and Method Dispatch

Point object

P
‘l header |vptr X Y

vtable for class Point: 2 o=

& code for Point () code for samePlace ()
Point object

q
‘l header |vptr X Y

o Virtual method table (vtable)

* Like a jump table for instance (“virtual”) methods plus other class info
* One table per class
* Each object instance contains a vtable pointer (vptr)

o Object header : GC info, hashing info, lock info, etc.

21

YA/ UNIVERSITY of WASHINGTON

L25: Java & C CSE351, Summer 2021

Java Constructors

- When we call new: allocate space for object (data fields
and references), initialize to zero, and run constructor

Java:

C pseudo-translation:

Point p = new Point(); Point* p = calloc(l,sizeof (Point))

p—->header = ...;
p->vptr = &Point vtable;
p->vptr[0] (p);

Point object

b
‘l header |vptr

vtable for class Point:

V

pod o—

& code for Point () code for samePlace ()

22

YA/ UNIVERSITY of WASHINGTON

Java Methods

- Static methods are just like functions
- Instance methods:

e Can refer to this;

* Have an implicit first parameter for this; and

L25: Java & C

e Can be overridden in subclasses

- The code to run when calling an instance method is

chosen at runtime by lookup in the vtable

Java:

p.samePlace (q) ;

Point object

CSE351, Summer 2021

C pseudo-translation:

p->vptr[l] (p, 9)-

P
‘l header | vptr

vtable for class Point:

._

\ code for Point ()

code for samePlace ()

23

YA UNIVERSITY of WASHINGTON L25: Java & C CSE351, Summer 2021

Subclassing

class ThreeDPoint extends Point {
double z;
boolean samePlace (Point p2) {
return false;
}
void sayHi () {
System.out.println("hello");
}
}

- Where does “z” go? At end of fields of Point

* Point fields are always in the same place, so Point code can
run on ThreeDPoint objects without modification

- Where does pointer to code for two new methods go?
* No constructor, so use default Point constructor
* To override “samePlace”, use same vtable position

* Add new pointer at end of vtable for new method “sayHi”
24

YA UNIVERSITY of WASHINGTON L25: Java & C CSE351, Summer 2021

Subclassing

class ThreeDPoint extends Point {
double z;
boolean samePlace (Point p2) {
return false;
}
void sayHi () {
System.out.println("hello");

z tacked on at end
ThreeDPoint object v

header | vptr X Y z

sayHi tacked on at end

vtable for ThreeDPoint: | constructor || samePlace || savH1i

(not Point) \\\

Old code for New code for
constructor samePlace

25

YA UNIVERSITY of WASHINGTON L25: Java & C CSE351, Summer 2021

Dynamic Dispatch

Point object

header |vptr X Y

Polnt vtable: \ code for Point’s

p .) samePlace ()
277 \\

code for Point ()

ThreeDPoint object
header | vptr / X Y z
code for
2 Hi
ThreeDPoint vtable: @ 2avil
.\ code for ThreeDPoint’s
samePlace ()
Java: C pseudo-translation:
Point p = ?2?27?; // works regardless of what p 1is
return p.samePlace (q) ; return p->vtr[l] (p, 9):
26

YA UNIVERSITY of WASHINGTON L25: Java & C CSE351, Summer 2021

Ta-da!

- In CSE143, it may have seemed “magic” that an
inherited method could call an overridden method

* You were tested on this endlessly

- The “trick” in the implementation is this part:

p->vptr [1] (P ’ q)
* In the body of the pointed-to code, any calls to (other)
methods of this will use p->vptr

* Dispatch determined by p, not the class that defined a
method

27

YA/ UNIVERSITY of WASHINGTON L25: Java & C CSE351, Summer 2021

Practice Question

class Vehicle {
int passengers;

What would you expect to // methods not shown

be the order of contents in an |}

class Car extends Vehicle {

iInstance of the Car class? int wheels;

A.

// methods not shown

}

Vehicle vtable ptr, passengers, wheels

header, Vehicle vtable ptr, Car vtable ptr,
passengers, wheels

header, Car vtable ptr, passengers,
wheels

We’re lost... 28

YA UNIVERSITY of WASHINGTON L25: Java & C CSE351, Summer 2021

Implementing Programming
Languages

- Many choices in how to implement programming models
- We've talked about compilation, can also interpret

> Interpreting languages has a long history
* Lisp, an early programming language, was interpreted

- Interpreters are still iIn common use:
* Python, Javascript, Ruby, Matlab, PHP, Perl, ...

Interpreter
Your source code implementation

v Your source code v

Binary executable nterpreter binary
|(Hardware _‘ [Hardware _‘ 29

YA UNIVERSITY of WASHINGTON L25: Java & C CSE351, Summer 2021

An Interpreter is a Program

- Execute (something close to) the source code directly
- Simpler/no compiler — less translation
- More transparent to debug — less translation

- Easier to run on different architectures — runs in a
simulated environment that exists only inside the

Interpreter process
* Just port the interpreter (program), Interpreter
not the program-being-interpreted implementation

- Slower and harder to optimize

Your source code v

pN

nterpreter binary

30

YA UNIVERSITY of WASHINGTON L25: Java & C CSE351, Summer 2021

Interpreter vs. Compiler

- An aspect of a language implementation
* Alanguage can have multiple implementations
* Some might be compilers and other interpreters

- “Compiled languages” vs. “Interpreted languages” a
misuse of terminology

* But very common to hear this
* And has some validation in the real world (e.g. JavaScript vs. C)

- Also, as about to see, modern language implementations
are often a mix of the two. E.g. :

* Compiling to a bytecode language, then interpreting
* Doing just-in-time compilation of parts to assembly for performance

31

YA UNIVERSITY of WASHINGTON L25: Java & C CSE351, Summer 2021

“Th JVM 9 Note: The JVM is different than the CSE VM running
e on VMWare. Yet another use of the word “virtual”!

- Java programs are usually run by a
Java virtual machine (JVM)

* JVMs interpret an intermediate language called Java
bytecode

* Many JVMs compile bytecode to native machine code
- Just-in-time (JIT) compilation
- http://en.wikipedia.org/wiki/Just-in-time_compilation
* Java is sometimes compiled ahead of time (AOT) like C

32

http://en.wikipedia.org/wiki/Just-in-time_compilation

YA UNIVERSITY of WASHINGTON L25: Java & C CSE351, Summer 2021

Compiling and Running Java

1.

2.

3.

Save your Java code in a . java file
To run the Java compiler:

* javac Foo.java

* The Java compiler converts Java into Java bytecodes
- Storedina .classfile

To execute the program stored in the bytecodes, Java
bytecodes can be interpreted by a program (an
interpreter)

* For Java, this interpreter is called the Java Virtual Machine (the
JVM)

* To run the virtual machine:
* java Foo

* This Loads the contents of Foo.class and interprets the
bytecodes

33

YA/ UNIVERSITY of WASHINGTON

L25: Java & C CSE351, Summer 2021

Virtual Machine Model

[

High-Level Language Program
(e.g. Java, C)

Bytecode compiler
(e.g. Jjavac Foo.java)

Ahead-of-time
compiler

compile time

run time

V|rtual Machine Language

(e.g. Java bytecodes)

Virtual machm
(interpreter) compller
(eg java Foo

g

Native Machine Language
(e.g. x86, ARM, MIPS)

34

W UNIVERSITY of WASHINGTON L25: Java & C

CSE351, Summer 2021

Java Bytecode

- Like assembly code for JVM,
but works on all JVMs

* Hardware-independent!
- Typed (unlike x86 assembly)
- Strong JVM protections

Holds pointer this

Other arguments to method

Other local variables

|

X

0|1|2]|3

4

variable table

operand stack

constant
pool

35

W UNIVERSITY of WASHINGTON L25: Java & C

CSE351, Summer 2021

Holds pointer this
JVM Ope rand StaCk Other arguments to method

Other local variables

[Y \

JVM: olx]2]3Ta] n
variable table
ﬂi’=integer, N\ operand stack
‘a’ = reference,
‘©’ for byte,
‘c’ for char, T
Kld’ for double,...j constant
pool
Y
Bytecode: iload 1 // push 1°° argument from table onto stack
iload 2 // push 2" argument from table onto stack

iadd // pop top 2 elements from stack, add together, and
// push result back onto stack

istore 3 // pop result and put it into third slot in table

/ Compiled | mov 8 (3ebp), %eax

No registers or stack locations! to (IA32) x86: |mov 12 (%ebp), S$edx
All operations use operand stack add %edx, %eax

mov %eax, -8 (%ebp)

36

W UNIVERSITY of WASHINGTON L25: Java & C

A Simple Java Method

CSE351, Summer 2021

4 areturn

Method java.lang.String getEmployeeName ()

1 getfield #5 <Field java.lang.String name>
// getfield instruction has a 3-byte encoding
// Pop an element from top of stack,
// specified instance field and push it onto stack
// "name" field is the fifth field of the object

// Returns object at top of stack

0 aload 0 // "this" object is stored at 0 in the var table

retrieve its

Byte number: O 1

aload 0 |getfield

00

05

areturn

As stored inthe .class file: |2A|B4|00

05

BO

http://en.wikipedia.org/wiki/Java bytecode instruction listin

gs

37

http://en.wikipedia.org/wiki/Java_bytecode_instruction_listings
http://en.wikipedia.org/wiki/Java_bytecode_instruction_listings

YA UNIVERSITY of WASHINGTON L25: Java & C CSE351, Summer 2021

Class File Format

- Every class in Java code is compiled to its own class file
- 10 sections in the Java class file structure:

Magic number: OxCAFEBABE (legible hex)
Version of class file format: minor & major versions of the class file
Constant pool: Set of constant values for the class

Access flags: For example whether the class is abstract, static, final, etc.

This class: The name of the current class

Super class: The name of the super class

Interfaces: Any interfaces in the class

Fields: Any fields in the class

Methods: Any methods in the class

Attributes: Any attributes of the class (e.g. name of source file, etc.)

- A .jar file collects together all of the class files needed
for the program, plus any additional resources (e.qg.
Images)

38

YA UNIVERSITY of WASHINGTON L25: Java & C CSE351, Summer 2021

. Compiled from Employee.java
Dlsassembled class Employee extends java.lang.Object {
public Employee (Jjava.lang.String,int);
public java.lang.String getEmployeeName () ;

Java BthCOde public int getEmployeeNumber () ;

Method Employee (java.lang.String, int)
0 aload 0

1 invokespecial #3 <Method java.lang.Object()>
4 aload 0
5
6

—

aload 1

putfield #5 <Field java.lang.String name>
9 aload 0
10 iload 2
11 putfield #4 <Field int idNumber>
14 aload 0
15 aload 1
> jJavap -c¢ Employee 16 iload 2
17 invokespecial #6 <Method void

storeData (java.lang.String, int)>

> javac Employee.java

20 return

Method java.lang.String getEmployeeName ()

0 aload 0

1 getfield #5 <Field java.lang.String name>
4 areturn

Method int getEmployeeNumber ()

0 aload 0

. - . - 1 getfield #4 <Field int idNumber>
http://en.wikipedia.org/wiki/Ja PR
va bytecode instruction listing

S Method void storeData (java.lang.String, int)

39

http://en.wikipedia.org/wiki/Java_bytecode_instruction_listings
http://en.wikipedia.org/wiki/Java_bytecode_instruction_listings
http://en.wikipedia.org/wiki/Java_bytecode_instruction_listings

YA UNIVERSITY of WASHINGTON L25: Java & C CSE351, Summer 2021

Other languages for JVMs

- JVMs run on so many computers that compilers have
been built to translate many other languages to Java
bytecode:

Aspectd, an aspect-oriented extension of Java

ColdFusion, a scripting language compiled to Java

Clojure, a functional Lisp dialect

JRuby, an implementation of Ruby

Jython, an implementation of Python

Rhino, an implementation of JavaScript

Scala, an object-oriented and functional programming language
And many others, even including C!

- Originally, JVMs were designed and built for Java (still the
major use) but JVMs are also viewed as a safe, GC’ed
platform %0

YA/ UNIVERSITY of WASHINGTON

L25: Java & C

CSE351, Summer 2021

Microsoft’s C# and .NET Framework

- C# has similar motivations as
Java
* Virtual machine is called the
Common Language Runtime

* Common Intermediate Language
is the bytecode for C# and other
languages in the .NET framework

C# VB.NET
code code
Compiler Compiler

J#

code

l

Compiler

— | —

"

Common
Intermediate
Language

l

Common
Language
Runtime

.

01001100101011
11010101100110

e Common Language Infrastructure -------- .

NET compatible languages compile to a
second platform-neutral language called
Common Intermediate Language (CIL).

The platform-specific Common Language
Runtime (CLR) compiles CIL to machine
readable code that can be executed on t
current platform.

41

W UNIVERSITY of WASHINGTON L25: Java & C CSE351, Summer 2021

Questions?

WA UNIVERSITY of WASHINGTON L25: Java & C CSE351, Summer 2021

Type-safe casting in Java

- Can only cast compatible object references
° Based on CIaSS hierarchy class Boat extends Vehicle {

int propellers;

}

class Object { class Vehicle {
> int passengers;

} })

class Car extends Vehicle {
int wheels;

Vehicle v = new Vehicle(); // super class of Boat and Car

Boat bl = new Boat(); // |--> sibling

Car cl = new Car(); // |—--> sibling

Vehicle vl = new Car(); <— / Everything needed for Vehiclealsoin Car

Vehicle v2 = vl; <4+— / vlisdeclared astype Vehicle

Car c?2 = new Boat(); <4— X Compiler error: Incompatible type — elements in
Car that are not in Boat (siblings)

Car c3 = new Vehicle(); <w— X Compiler error: Wrong direction —elements Car
notin Vehicle (wheels)

Boat b2 = (Boat) v; <4— X Runtime error: Vehicle does not contain all
elements in Boat (propellers)

Car cd = (Car) v2; <4— / v2referstoa Car at runtime

Car c5 = (Car) bl; <— X Compiler error: Unconvertable types—Db1 is

declared as type Boat a3

