
L02: Memory & Data IL24: Malloc III CSE351, Summer 2021

Memory Allocation III
CSE 351 Summer 2021

https://xkcd.com/835/

Instructor:
Mara Kirdani-Ryan

Teaching Assistants:
Kashish Aggarwal
Nick Durand
Colton Jobs
Tim Mandzyuk

https://xkcd.com/835/

L02: Memory & Data IL24: Malloc III CSE351, Summer 2021

Gentle, Loving Reminders
● Hw21 due tonight!
● Lab 5 due Wednesday!

○ Email if you’re using late days.
○ Focus on understanding concepts, before diving into

coding! C can be tricky!
● Unit Summary 3 due Friday!

○ Covering Caches, Processes, VM, Malloc
○ Only up to last friday, we’ve talked about everything!

And then we’re done!

2

L02: Memory & Data IL24: Malloc III CSE351, Summer 2021

Course Evals are out!
Please, please, please fill them out!

It’s my first time teaching, I’d love
to know how y’all felt about it!

3

L02: Memory & Data IL24: Malloc III CSE351, Summer 2021

Allocation Policy Tradeoffs
o Data structure of blocks on lists

• Implicit (free/allocated), explicit (free), segregated
(many free lists) – others possible!

o Placement policy: first-fit, next-fit, best-fit
• Throughput vs. amount of fragmentation

o When do we split free blocks?
• How much internal fragmentation can we tolerate?

o When do we coalesce free blocks?
• Immediate coalescing: Every time free is called
• Deferred coalescing: Defer coalescing until needed

• e.g. when scanning free list for malloc or when
external fragmentation reaches some threshold 4

L02: Memory & Data IL24: Malloc III CSE351, Summer 2021

More Info on Allocators
o D. Knuth, “The Art of Computer Programming”,

2nd edition, Addison Wesley, 1973
• The classic reference on dynamic storage allocation

o Wilson et al, “Dynamic Storage Allocation: A
Survey and Critical Review”, Proc. 1995 Int’l
Workshop on Memory Management, Kinross,
Scotland, Sept, 1995.
• Comprehensive survey
• Available from CS:APP student site (csapp.cs.cmu.edu)

5

L02: Memory & Data IL24: Malloc III CSE351, Summer 2021

Memory-Related Perils in C

6

A) Dereferencing a non-pointer

B) Freed block – access again

C) Freed block – free again

D) Memory leak – failing to free memory

E) No bounds checking

F) Reading uninitialized memory

G) Referencing nonexistent variable

H) Wrong allocation size

L02: Memory & Data IL24: Malloc III CSE351, Summer 2021

Find That Bug!

7

char s[8];
int i;

gets(s); /* reads "123456789" from stdin */

Error Prog stop Fix:
Type: Possible?

L02: Memory & Data IL24: Malloc III CSE351, Summer 2021

Find That Bug!

8

char s[8];
int i;

gets(s); /* reads "123456789" from stdin */

No bounds checking! Buffers could overflow!

Fix: use fgets()

L02: Memory & Data IL24: Malloc III CSE351, Summer 2021

Polling Question [Alloc III]
o Which error is this?

9

Dereferencing a non-pointer��

Reading uninitialized Memory��

Returning/referencing a non-existent variable��

Returning the wrong type��

int* foo() {
 int val = 0;

 . . .
 return &val;
}

L02: Memory & Data IL24: Malloc III CSE351, Summer 2021

Find That Bug!

• N and M defined elsewhere (#define)

10

int **p;

p = (int **)malloc(N * sizeof(int));

for (int i = 0; i < N; i++) {
 p[i] = (int *)malloc(M * sizeof(int));
}

Error Prog stop Fix:
Type: Possible?

L02: Memory & Data IL24: Malloc III CSE351, Summer 2021

Find That Bug!

• N and M defined elsewhere (#define)

11

int **p;

p = (int **)malloc(N * sizeof(int));

for (int i = 0; i < N; i++) {
 p[i] = (int *)malloc(M * sizeof(int));
}

Wrong allocation size! We needed to allocate an array of pointers!

Fix: Make sure that types passed to malloc() match

L02: Memory & Data IL24: Malloc III CSE351, Summer 2021

Find That Bug!

• A is NxN matrix, x is N-sized vector (so product is
vector of size N)

• N defined elsewhere (#define)

12

/* return y = Ax */
int *matvec(int **A, int *x) {
 int *y = (int *)malloc(N*sizeof(int));
 int i, j;

 for (i = 0; i < N; i++)
 for (j = 0; j < N; j++)
 y[i] += A[i][j] * x[j];

 return y;
}

L02: Memory & Data IL24: Malloc III CSE351, Summer 2021

Find That Bug!

• A is NxN matrix, x is N-sized vector (so product is
vector of size N)

• N defined elsewhere (#define)

13

/* return y = Ax */
int *matvec(int **A, int *x) {
 int *y = (int *)malloc(N*sizeof(int));
 int i, j;

 for (i = 0; i < N; i++)
 for (j = 0; j < N; j++)
 y[i] += A[i][j] * x[j];

 return y;
}

We’re reading uninitialized memory! What’s in y?
Fix: Zero y[i], or use calloc()

L02: Memory & Data IL24: Malloc III CSE351, Summer 2021

Find That Bug!
o The classic scanf bug

• int scanf(const char *format, ...)

14

int val;
...
scanf("%d", val);

See: http://www.cplusplus.com/reference/cstdio/scanf/?kw=scanf

http://www.cplusplus.com/reference/cstdio/scanf/?kw=scanf

L02: Memory & Data IL24: Malloc III CSE351, Summer 2021

Find That Bug!
o The classic scanf bug

• int scanf(const char *format, ...)

15

int val;
...
scanf("%d", val);

See: http://www.cplusplus.com/reference/cstdio/scanf/?kw=scanf

We’re dereferencing a non-pointer!
Fix: Use &val

http://www.cplusplus.com/reference/cstdio/scanf/?kw=scanf

L02: Memory & Data IL24: Malloc III CSE351, Summer 2021

Find That Bug!

16

x = (int*)malloc(N * sizeof(int));
 // manipulate x
free(x);

 ...

y = (int*)malloc(M * sizeof(int));
 // manipulate y
free(x);

L02: Memory & Data IL24: Malloc III CSE351, Summer 2021

Find That Bug!

17

x = (int*)malloc(N * sizeof(int));
 // manipulate x
free(x);

 ...

y = (int*)malloc(M * sizeof(int));
 // manipulate y
free(x);

We free’d x twice -- double free!
Fix: change to free(y), fix typos

L02: Memory & Data IL24: Malloc III CSE351, Summer 2021

Find That Bug!

18

x = (int*)malloc(N * sizeof(int));
 // manipulate x
free(x);

 ...

y = (int*)malloc(M * sizeof(int));
for (i=0; i<M; i++)
 y[i] = x[i]++;

L02: Memory & Data IL24: Malloc III CSE351, Summer 2021

Find That Bug!

19

x = (int*)malloc(N * sizeof(int));
 // manipulate x
free(x);

 ...

y = (int*)malloc(M * sizeof(int));
for (i=0; i<M; i++)
 y[i] = x[i]++;

We’re accessing x after we free!
Fix: Move free, or do another allocation

L02: Memory & Data IL24: Malloc III CSE351, Summer 2021

Find That Bug!

20

typedef struct L {
 int val;
 struct L *next;
} list;

void foo() {
 list *head = (list *) malloc(sizeof(list));
 head->val = 0;
 head->next = NULL;
 // create and manipulate the rest of the list
 ...
 free(head);
 return;
}

L02: Memory & Data IL24: Malloc III CSE351, Summer 2021

Find That Bug!

21

typedef struct L {
 int val;
 struct L *next;
} list;

void foo() {
 list *head = (list *) malloc(sizeof(list));
 head->val = 0;
 head->next = NULL;
 // create and manipulate the rest of the list
 ...
 free(head);
 return;
}

We lost our pointer to the list! We’ve just leaked all that memory!
Fix: need to free entire list, not just head

L02: Memory & Data IL24: Malloc III CSE351, Summer 2021

Dealing With Memory Bugs
o Conventional debugger (gdb)

• Good for finding bad pointer dereferences
• Hard to detect the other memory bugs

o Debugging malloc (UToronto CSRI malloc)
• Wrapper around conventional malloc
• Detects memory bugs at malloc and free boundaries

• Memory overwrites that corrupt heap structures
• Some instances of freeing blocks multiple times
• Memory leaks

• Cannot detect all memory bugs
• Overwrites into the middle of allocated blocks
• Freeing block twice that’s reallocated in the interim
• Referencing freed blocks 22

Non-testable
Material

L02: Memory & Data IL24: Malloc III CSE351, Summer 2021

Dealing With Memory Bugs
o Some malloc implementations contain checks

• Linux glibc malloc: setenv MALLOC_CHECK_ 2
• FreeBSD: setenv MALLOC_OPTIONS AJR

o Binary translator: valgrind (Linux), Purify
• Powerful debugging and analysis technique
• Rewrites text section of executable object file
• Can detect all errors as debugging malloc
• Can also check each individual reference at runtime

• Bad pointers
• Overwriting
• Referencing outside of allocated block

23

Non-testable
Material

L02: Memory & Data IL24: Malloc III CSE351, Summer 2021

What about Java or Python or …?
o In memory-safe languages, most of these bugs

are impossible
• Cannot perform arbitrary pointer manipulation
• Cannot get around the type system
• Array bounds checking, null pointer checking
• Automatic memory management

o But one of the bugs we saw earlier is possible.
Which one?

24

Non-testable
Material

L02: Memory & Data IL24: Malloc III CSE351, Summer 2021

Debugging

25

L02: Memory & Data IL24: Malloc III CSE351, Summer 2021

You’re going to write bugs!
● Seemingly an inevitability

26

"As soon as we started programming, we
found to our surprise that it wasn't as easy to
get programs right as we had thought.
Debugging had to be discovered. I can
remember the exact instant when I realized
that a large part of my life from then on was
going to be spent in finding mistakes in my
own programs." ~ Maurice Wilkes (EDSAC)

L02: Memory & Data IL24: Malloc III CSE351, Summer 2021

But, you can prevent some of them!

27

"Debugging is twice as hard as writing the code
in the first place. Therefore, if you write the
code as cleverly as possible, you are, by
definition, not smart enough to debug it."

Brian Kernighan

L02: Memory & Data IL24: Malloc III CSE351, Summer 2021

“Defensive Coding”
● Says “I’m going to spend most of my time

debugging anyways, may as well spend more
time coding up front”
○ Using #defines instead of numbers
○ Coding with comments that record though process
○ Add sensible checks throughout program

■ Are these pointers null?
■ Are these data structures still good?

28

L02: Memory & Data IL24: Malloc III CSE351, Summer 2021

There’s lots of debugging strategies!

You’ve got to find what works for you!

29

L02: Memory & Data IL24: Malloc III CSE351, Summer 2021

Mindful, Embodied Debugging

30

L02: Memory & Data IL24: Malloc III CSE351, Summer 2021

A brief grounding...

31

L02: Memory & Data IL24: Malloc III CSE351, Summer 2021

Mindfulness
● “Present, attentive mind”

○ There’s so many definitions, it’s hard to keep track!

● A few questions, instead:
○ Are you focused on what is, or should be?
○ Where’s your focus? If it’s wandering, can it come back?
○ How are you feeling? What are you feeling?
○ Are those feelings attached to anything in the present

moment? If not, can you gently let them go?

32

L02: Memory & Data IL24: Malloc III CSE351, Summer 2021

Mindfulness, Computing, and me
● What happens when your code doesn’t work?

○ For me, I’ve felt defeated, grumpy, anxious
○ I’ve tried to fix things, and it still doesn’t work
○ I’ll get more grumpy and anxious
○ I’ll keep cycling in this for a while, getting nowhere
○ Even more anxious and defeated, usually bolstered

by my lifetime of self-esteem issues

● Sound familiar?
○ There’s lots of research; folks don’t think well with

high emotional affect
○ What about alternatives?

33

L02: Memory & Data IL24: Malloc III CSE351, Summer 2021

Mindfulness and debugging
● What happens when your code doesn’t work?

○ I try to acknowledge that it’s part of the process
○ I’ll take a minute, I’ll take a few breaths
○ I’ll think; what might’ve gone wrong?
○ I’ll go looking and won’t find anything wrong
○ I’ll feel tired, and maybe anxious

■ Is there any way that I can make space for what
I’m feeling?

■ Can I try and calm down, before trying again?
○ Is there a different approach that I can take, if this one

isn’t working?

34

L02: Memory & Data IL24: Malloc III CSE351, Summer 2021

AKA Being Systematic
● What if someone asked you, every 5 minutes, to

justify and explain what you were doing?
○ What are you doing?
○ Why are you doing it?
○ What else have you tried?

● Sometimes folks get locked into an approach
without evaluating others first!
○ Rearranging lines, without understanding why?
○ Changing constants, without understanding why?
○ Re-running and getting the same results?
○ What else could you be doing?

● Metacognition: Recognizing your thinking,
which is basically just mindfulness 35

L02: Memory & Data IL24: Malloc III CSE351, Summer 2021

Something to try:
Every 10 minutes (set a timer),
evaluate your approach!

What are you trying to achieve?
What have you tried?
What else could you try?
Could you defend your current approach,
against alternatives?

36

L02: Memory & Data IL24: Malloc III CSE351, Summer 2021

Embodiment
● Recognizing your physical form, how you feel in

your body, at this moment
○ Closely tied with mindfulness, equally hard to define

● A few questions, again:
○ How do you feel, in your body?
○ Are your feet grounded against the floor?
○ Are you sitting tall? Could you sit taller?
○ Are there any sensations that you notice?
○ How does it feel to be breathing?
○ Could you breathe a little deeper, and a little slower?

37

L02: Memory & Data IL24: Malloc III CSE351, Summer 2021

Embodiment, Computing, and Me
● Computing’s kinda weird, honestly
● Some programmers describe being “in the zone”

○ Incredibly focused, incredibly productive
○ For me, this looks like hyperfocus

38

L02: Memory & Data IL24: Malloc III CSE351, Summer 2021

Embodiment, Computing, and Me
● Computing’s kinda weird, honestly
● Some programmers describe being “in the zone”

○ Incredibly focused, incredibly productive
○ For me, this looks like hyperfocus

● Hyperfocus: trouble regulating attention
between different tasks
○ Getting sucked in
○ Oblivious to everything else
○ Immobile for hours at a time
○ “Productive”, but not always a good thing

39

L02: Memory & Data IL24: Malloc III CSE351, Summer 2021

Embodiment, Computing, and Me
● For me, hyperfocus is sometimes fun,

sometimes inconvenient
○ When I was little, I’d forget to go to the bathroom
○ Today, I’ll be holding my breath unconsciously
○ Really, I’ll forget to be embodied

40

L02: Memory & Data IL24: Malloc III CSE351, Summer 2021

Embodiment, Computing, and Me
● For me, hyperfocus is sometimes fun,

sometimes inconvenient
○ When I was little, I’d forget to go to the bathroom
○ Today, I’ll be holding my breath unconsciously
○ Really, I’ll forget to be embodied

● CS actively discourages embodiment!
○ Sitting in front of a screen for hours on end
○ Hackathons are a great way to ignore bodily needs
○ Lots of trans* folks in programming, it’s a great way to

escape dysphoria

41

L02: Memory & Data IL24: Malloc III CSE351, Summer 2021

Embodiment and debugging
● What happens when your code doesn’t work?

○ As my mood drops, my posture collapses
○ Feelings will manifest in my body; I won’t notice them
○ I’ll be feeling “tense”, but I won’t be able to

decompose that into feelings
○ I’ll forget to attend to my needs, or I’ll tell myself that

I’ll do that after I’m done

42

L02: Memory & Data IL24: Malloc III CSE351, Summer 2021

Embodiment and debugging
● What happens when your code doesn’t work?

○ I try to acknowledge that it’s part of the process
○ I’ll take a minute, I’ll take a few breaths
○ I’ll think; what might’ve gone wrong?
○ I’ll go looking and won’t find anything wrong
○ I’ll feel tired, and maybe anxious
○ I’ll check in with my body, and realize that a cup of tea

and a bathroom trip might help me feel more
comfortable

○ Sometimes, as I’m making tea, I’ll realize what the
issue was

■ Really, I just needed a break

43

L02: Memory & Data IL24: Malloc III CSE351, Summer 2021

AKA Supporting yourself!
● There are few guarantees for support, besides

the support that you can give yourself
○ Supporting yourself is a learning process!
○ I’ve been terrible at it for most of my life,

I’m just now getting better

44

L02: Memory & Data IL24: Malloc III CSE351, Summer 2021

AKA Supporting yourself!
● There are few guarantees for support, besides

the support that you can give yourself
○ Supporting yourself is a learning process!
○ I’ve been terrible at it for most of my life,

I’m just now getting better
● Supporting myself helps my debugging!

○ I’ve figured out so many things on a break
○ I’ve gotten better at recovering from setbacks
○ I’m more comfortable being myself;

I’ll always show up for me

45

L02: Memory & Data IL24: Malloc III CSE351, Summer 2021

An aside; breaks
● People are really different!

○ What works for me might not work for you

● We can be mindful of how we’re resting!
● What does a break mean?

○ Attending to bodily needs?
○ Checking phones and getting sucked in?
○ Doing 18 other things on the internet?
○ Do you feel rested after these breaks?
○ Is there something that you could do, that might be

more restful?
■ I haven’t found anything better than lying on the

floor, arms out, eyes closed
46

L02: Memory & Data IL24: Malloc III CSE351, Summer 2021

Something to try:
Every 10 minutes (set a timer),
evaluate yourself!

How do I feel?
Do I have any needs that I should address?
Am I feeling anxious, stressed, or frustrated?
Is there anything I can do to make myself
more comfortable?

47

L02: Memory & Data IL24: Malloc III CSE351, Summer 2021

Good luck finishing lab 5!
Good luck on US#3!

Reach out if you want to meet!
calendly.com/marakr

48

http://calendly.com/marakr

L02: Memory & Data IL24: Malloc III CSE351, Summer 2021

Freeing with LIFO Policy (Explicit
Free List)

Predecessor
Block

Successor
Block

Change in
Nodes in
Free List

Number of
Pointers
Updated

Case 1 Allocated Allocated

Case 2 Allocated Free

Case 3 Free Allocated

Case 4 Free Free

L02: Memory & Data IL24: Malloc III CSE351, Summer 2021

Find That Bug! (Slide 50)

50

int* foo() {
 int val = 0;

 return &val;
}

Error Prog stop Fix:
Type: Possible?

L02: Memory & Data IL24: Malloc III CSE351, Summer 2021

Memory Allocation
o Dynamic memory allocation

• Introduction and goals
• Allocation and deallocation (free)
• Fragmentation

o Explicit allocation implementation
• Implicit free lists
• Explicit free lists (Lab 5)
• Segregated free lists

o Implicit deallocation: garbage collection
o Common memory-related bugs in C

51

L02: Memory & Data IL24: Malloc III CSE351, Summer 2021

Wouldn’t it be nice…
o If we never had to free memory?
o Do you free objects in Java?

• Reminder: implicit allocator

52

L02: Memory & Data IL24: Malloc III CSE351, Summer 2021

Garbage Collection (GC)

o Garbage collection: automatic reclamation of
heap-allocated storage – application never explicitly frees
memory

o Common in implementations of functional languages,
scripting languages, and modern object oriented
languages:
• Lisp, Racket, Erlang, ML, Haskell, Scala, Java, C#, Perl, Ruby,

Python, Lua, JavaScript, Dart, Mathematica, MATLAB, many
more…

o Variants (“conservative” garbage collectors) exist for C
and C++
• However, cannot necessarily collect all garbage

53

void foo() {
 int* p = (int*) malloc(128);
 return; /* p block is now garbage! */
}

(Automatic Memory Management)

L02: Memory & Data IL24: Malloc III CSE351, Summer 2021

Garbage Collection
o How does the memory allocator know when

memory can be freed?
• In general, we cannot know what is going to be used in

the future since it depends on conditionals
• But, we can tell that certain blocks cannot be used if

they are unreachable (via pointers in
registers/stack/globals)

o Memory allocator needs to know what is a pointer
and what is not – how can it do this?
• Sometimes with help from the compiler

54

L02: Memory & Data IL24: Malloc III CSE351, Summer 2021

Memory as a Graph
o We view memory as a directed graph

• Each allocated heap block is a node in the graph
• Each pointer is an edge in the graph
• Locations not in the heap that contain pointers into the heap are

called root nodes (e.g. registers, stack locations, global variables)

55

A node (block) is reachable if there is a path from any root to that node
Non-reachable nodes are garbage (cannot be needed by the application)

Root nodes

Heap nodes

not reachable
(garbage)

reachable

L02: Memory & Data IL24: Malloc III CSE351, Summer 2021

Garbage Collection
o Dynamic memory allocator can free blocks if

there are no pointers to them

o How can it know what is a pointer and what is
not?

o We’ll make some assumptions about pointers:
• Memory allocator can distinguish pointers from

non-pointers
• All pointers point to the start of a block in the heap
• Application cannot hide pointers

(e.g. by coercing them to a long, and then back again)
56

L02: Memory & Data IL24: Malloc III CSE351, Summer 2021

Classical GC Algorithms
o Mark-and-sweep collection (McCarthy, 1960)

• Does not move blocks (unless you also “compact”)
o Reference counting (Collins, 1960)

• Does not move blocks (not discussed)
o Copying collection (Minsky, 1963)

• Moves blocks (not discussed)
o Generational Collectors (Lieberman and Hewitt, 1983)

• Most allocations become garbage very soon, so
focus reclamation work on zones of memory recently allocated.

o For more information:
• Jones, Hosking, and Moss, The Garbage Collection Handbook:

The Art of Automatic Memory Management, CRC Press, 2012.
• Jones and Lin, Garbage Collection: Algorithms for Automatic

Dynamic Memory, John Wiley & Sons, 1996.
57

L02: Memory & Data IL24: Malloc III CSE351, Summer 2021

Mark and Sweep Collecting
o Can build on top of malloc/free package

• Allocate using malloc until you “run out of space”
o When out of space:

• Use extra mark bit in the header of each block
• Mark: Start at roots and set mark bit on each reachable block
• Sweep: Scan all blocks and free blocks that are not marked

58

Before mark

root

After mark Mark bit set

After sweep freefree

Arrows are NOT
free list pointers

L02: Memory & Data IL24: Malloc III CSE351, Summer 2021

Assumptions For a Simple
Implementation
o Application can use functions to allocate memory:

• b=new(n) returns pointer, b, to new block with all locations
cleared

• b[i] read location i of block b into register
• b[i]=v write v into location i of block b

o Each block will have a header word (accessed at b[-1])

o Functions used by the garbage collector:
• is_ptr(p) determines whether p is a pointer to a block
• length(p) returns length of block pointed to by p, not including

header
• get_roots() returns all the roots

59

Non-testable
Material

L02: Memory & Data IL24: Malloc III CSE351, Summer 2021

Mark
o Mark using depth-first traversal of the memory graph

60

ptr mark(ptr p) { // p: some word in a heap block
 if (!is_ptr(p)) return; // do nothing if not pointer
 if (markBitSet(p)) return; // check if already marked
 setMarkBit(p); // set the mark bit
 for (i=0; i<length(p); i++) // recursively call mark on
 mark(p[i]); // all words in the block
 return;
}

Before mark

root

After mark Mark bit set

Non-testable
Material

L02: Memory & Data IL24: Malloc III CSE351, Summer 2021

Sweep
o Sweep using sizes in headers

61

ptr sweep(ptr p, ptr end) { // ptrs to start & end of heap
 while (p < end) { // while not at end of heap
 if (markBitSet(p)) // check if block is marked
 clearMarkBit(p); // if so, reset mark bit
 else if (allocateBitSet(p)) // if not marked, but allocated
 free(p); // free the block
 p += length(p); // adjust pointer to next block
 }
}

Non-testable
Material

After mark Mark bit set

After sweep freefree

L02: Memory & Data IL24: Malloc III CSE351, Summer 2021

Conservative Mark & Sweep in C
o Would mark & sweep work in C?

• is_ptr determines if a word is a pointer by checking if it points to
an allocated block of memory

• But in C, pointers can point into the middle of allocated blocks
(not so in Java)
• Makes it tricky to find all allocated blocks in mark phase

• There are ways to solve/avoid this problem in C, but the resulting
garbage collector is conservative:
• Every reachable node correctly identified as reachable, but some

unreachable nodes might be incorrectly marked as reachable
• In Java, all pointers (i.e. references) point to the starting address of

an object structure – the start of an allocated block
62

header

ptr

Non-testable
Material

L02: Memory & Data IL24: Malloc III CSE351, Summer 2021

Memory Leaks with GC
o Not because of forgotten free — we have GC!
o Unneeded “leftover” roots keep objects reachable
o Sometimes nullifying a variable is not needed for

correctness but is for performance
o Example: Don’t leave big data structures you’re done with

in a static field

63

Root nodes

Heap nodes

not reachable
(garbage)

reachable

